Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2.3. Основные свойства преобразования Фурье

Научившись вычислять спектральные плотности достаточно простых, но часто встречающихся импульсных сигналов, перейдем к систематическому изучению свойств преобразования Фурье.

Линейность преобразования Фурье.

Это важнейшее свойство формулируется так: если имеется некоторая совокупность сигналов причем то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

Здесь — произвольные числовые коэффициенты.

Для доказательства формулы (2.26) следует подставить сумму сигналов в преобразование Фурье (2.16).

Свойства вещественной и мнимой частей спектральной плотности.

Пусть — сигнал, принимающий вещественные значения. Его спектральная плотность в общем случае является комплексной:

Подставам это выражение в формулу обратного преобразования фурье (2.18):

Для того чтобы сигнал, полученный путем такого двукратного преобразования, оставался вещественным, необходимо потребовать, чтобы

Это возможно лишь в том случае, если вещественная часть спектральной плотности сигнала есть четная, а мнимая часть — нечетная функция частоты:

Спектральная плотность сигнала, смещенного во времени.

Предположим, что для сигнала известно соответствие Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчета времени, обозначим этот смещенный сигнал как Покажем, что

Доказательство очень простое. Действительно,

Модуль комплексного числа при любых равен единйце, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена в частотной зависимости аргумента его спектральной плотности (фазовом спектре).

Зависимость спектральной плотности сигнала от выбора масштаба измерения времени.

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени t играет новая независимая переменная (k — некоторое вещественное число). Если то происходит «сжатие» исходного сигнала; если же то сигнал «растягивается» во времени.

Оказывается, что если то

Действительно,

откуда следует формула (2.29).

Итак, для того чтобы, например, сжать сигнал во времени, сохраняя его форму, необходимо распределить те же спектральные составляющие в более широком интервале частот при соответствующем пропорциональном уменьшении их амплитуд.

К рассматриваемому здесь вопросу близко примыкает Следующая задача.

Дан импульс отличный от нуля на отрезке и характеризуемый спектральной плотностью Требуется иайти спектральную плотность «обращенного во времени» сигнала который представляет собой «зеркальную копию» исходного импульсного колебания. Поскольку очевидно, что то

Выполнив замену переменной находим, что

Спектральная плотность производной и неопределенного интеграла.

Пусть сигнал s(t) и его спектральная плотность заданы. Будем изучать новый сигнал и Поставим цель найти его спектральную плотность - .

По определению,

Преобразование Фурье — линейная операция, значит, равенство (2.31) справедливо и по отношению к спектральным плотностям. Учитывая (2.28), получаем

Представляя экспоненциальную функцию рядом Тейлора: подставляя этот ряд в (2.32) и ограничиваясь первыми двумя членами, находим

При дифференцировании скорость изменения сигнала во времени возрастает. Как следствие модуль спектра производной имеет большие значения в области высоких частот по сравнению с модулем спектра исходного сигнала.

Формула (2.33) обобщается на случай спектра производной порядка. Легко доказать, что если , то

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель Поэтому принято говорить, что мнимое число является оператором дифференцирования, действующим в частотной области.

Рассмотренная функция является первообразной (неопределенным интегралом) по отношению к функции Из (2.33) формально следует, что спектр первообразной

Таким образом, множитель служит оператором интегрирования в частотной области.

Спектральная плотность сигнала на выходе интегратора.

Во многих радиотехнических устройствах находят применение так называемые интеграторы — физические системы, выходной сигнал которых пропорционален интегралу от входного воздействия. Рассмотрим конкретно интегратор, осуществляющий преобразование входного сигнала в выходной сигнал по следующему закону:

Здесь — фиксированный параметр.

Определенный интеграл, входящий в (2.36), равен, очевидно, разности двух значений первообразной сигнала одно из которых вычисляется при аргументе t, а другое — при аргументе . Используя соотношения (2.28) и (2.35), получаем формулу связи между спектральными плотностями сигналов на входе и выходе:

Сомножитель в скобках ограничен при любых частотах, в то же время модуль знаменателя линейно растет с увеличением частоты. Это свидетельствует о том, что рассматриваемый интегратор действует подобно фильтру нижних частот, ослабляя высокочастотные спектральные составляющие входного сигнала.

Спектральная плотность произведения сигналов.

Как известно, при суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и — два сигнала, для которых известны соответствия Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.38):

Изменив порядок интегрирования, будем иметь

откуда

Интеграл, стоящий в правой части, называют сверткой функций V и 17. В дальнейшем будем символически обозначать операцию свертки так:

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового мнот жителя равна свертке спектральных плотностей сомножителей:

Нетрудно убедиться, что операция свертки коммутативна, т. е. допускает изменение порядка следования преобразуемых функций:

Доказанная выше теорема о свертке может быть обращена: если спектральная плотность некоторого сигнала представляется в виде произведения причем то сигнал является сверткой сигналов но уже не в частотной, а во временной области:

Элементарное доказательство этой формулы читатель может провести самостоятельно.

<< Предыдущий параграф Следующий параграф >>
Оглавление