Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 2. Спектральные представления сигналов

Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.

В частности:

1. Гармонические сигналы инвариантны относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колебаний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой.

2. Техника генерирования гармонических сигналов относительно проста.

Если какой-либо сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, - что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала образуют его спектр.

2.1. Периодические сигналы и ряды Фурье

Математической моделью процесса, повторяющегося во времени, является периодический сигнал со следующим свойством:

Здесь Т — период сигнала.

Ставится задача найти спектральное разложение такого сигнала.

Ряд Фурье.

Зададим на отрезке времени рассмотренный в гл. I ортонормированцый базис, образованный гармоническими функциями с кратными частотами;

Любая функция из этого базиса удовлетворяет условию периодичности (2.1). Поэтому, - выполнив ортогональное разложение сигнала в этом базисе, т. е. вычислив коэффициенты

получим спектральное разложение

справедливое на всей бесконечности оси времени.

Ряд вида (2.4) называется рядом Фурье даннрго сигнала. Введем основную частоту последовательности, образующей периодический сигнал. Вычисляя коэффициенты разложения по формуле (2.3), запишем ряд Фурье для периодического сигнала

с коэффициентами

(2.6)

Итак, в общем случае периодический сигнал содержит не зависящую от времени постоянную составляющую и бесконечный набор гармонических колебаний, так называемых гармоник с частотами кратными основной частоте последовательности.

Каждую гармонику можно описать ее амплитудой и начальной фазой Для этого коэффициенты ряда Фурье следует записать в виде

так что

Подставив эти выражения в (2.5), получим другую, - эквивалентную форму ряда Фурье:

которая иногда оказывается удобнее.

Спектральная диаграмма периодического сигнала.

Так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы (рис. 2.1).

Здесь по горизонтальной оси в некотором масштабе отложены частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.

Рис. 2.1. Спектральные диаграммы некоторого периодического сигнала: а — амплитудная; б — фазовая

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала.

Изучим несколько конкретных примеров.


Пример 2.1. Ряд Фурье периодической последовательности прямоугольных видеоимпульсов с известными параметрами , четной относительно точки t = 0.

В радиотехнике отношение называют скважностью последовательности. По формулам (2.6) находим

Окончательную формулу ряда Фурье удобно записать в виде

На рис. 2.2 представлены амплитудные диаграммы рассматриваемой последовательности в двух крайних случаях.

Важно отметить, что последовательность коротких импульсов, следующих друг за другом достаточно редко , обладает богатым спектральным составом.

Рис. 2.2. Амплитудный спектр периодической последовательности ррямоугольных видеоимпульсов: а - при большой скважности; б — при малой скважности

Пример 2.2. Ряд Фурье периодической последовательности импульсов, образованной гармоническим сигналом вида ограниченным на уровне (предполагается, что ).

Введем специальный параметр — угол отсечки , определяемый из соотношения откуда

В соотаетствии с этим величина равна длительности одного импульса, выраженной в угловой мере:

Аналитическая запись импульса, порождающего рассматриваемую последовательность, имеет вид

Постоянная составляющая последовательности

Амплитудный коэффициент первой гармоники

Аналогично вычисляют амплитуды - гармонических составляющих при

Полученные результаты обычно записывают так:

где так называемые функции Берга:

Графики некоторых функций Берга приведены на рис. 2.3.

Рис. 2.3. Графики нескольких первых функций Берга


Комплексная форма ряда Фурье.

Спектральное разложение периодического сигнала можно выполнить и несколько ионному, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом ортонормированы на отрезке времени так как

Ряд Фурье произвольного периодического сигнала в данном случае принимает вид

с коэффициентами

Обычно используют следующую форму записи:

Выражение (2.11) представляет собой ряд Фурье в комплексной форме.

Спектр сигнала в соответствии с формулой (2.11) содержит компоненты на отрицательной полуоси частот, причем . В ряде (2.11) слагаемые с положительными и отрицательными частотами объединяются в пары, например:

Итак, отрицательная частота — понятие не физическое, а математическое, вытекающее из способа представления комплексных чисел.

Изображение периодического сигнала на комплексной плоскости.

Структура ряда Фурье (2.11) дает возможность изобразить периодический сигнал посредством бесконечной суммы вращающихся векторов на комплексной плоскости (рис. 2.4).

Построение осуществляется следующим образом. Из начала координат комплексной плоскости (точка О) строят вещественный вектор который отображает член, с номером

Рис. 2.4. Графическое отображение ряда Фурье в комплексной форме

Затем в формуле (2.11) полагают и строят суммы векторов

отвечающие вкладу слагаемых с положительными и отрицательными частотами. Если ряд Фурье сходится, то каждая из сумм отображается вектором конечной длины.

Как указывалось, коэффициенты ряда Фурье с положительными и отрицательными частотами комплексно сопряжены, поэтому вектор - всегда вещественный. Будучи сложен с постоянной составляющей он образует вектор, длина которого равна — значению сигнала в начальный момент времени.

В дальнейшем картина трансформируется - векторы Си соответствующие положительным частотам, вращаются с угловыми скоростями - в сторону увеличения фазового угла, в то время как векторы вращаются в противоположном направлении. Конец результирующего вектора в каждый момент времени определяет текущее значение сигнала.

Такая наглядная интерпретация спектрального разложения периодического сигнала будет использована в последующем параграфе.

<< Предыдущий параграф Следующий параграф >>
Оглавление