Главная > Разное > Магнитные измерения (Чечерников В.И.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА ЧЕТЫРНАДЦАТАЯ. ИССЛЕДОВАНИЕ ФЕРРО- И ПАРАМАГНИТНОГО РЕЗОНАНСА

§ 1. МЕТОДЫ ИССЛЕДОВАНИЯ ФЕРРОМАГНИТНОГО РЕЗОНАНСА

Еще в начале этого века Аркадьев (7] высказал мысль, что в переменных магнитных полях в ферромагнитных телах должен наблюдаться резонанс элементарных носителей магнитного момента — естественный ферромагнитный резонанс, и он же впервые наблюдал подобный ферромагнитный резонанс в железных и никелевых проволоках. Впервые объяснение этого явления было дано Дорфманом (13]. В 1935 г. Ландау и Лифшиц [26, 38] разработали общую теорию поведения ферромагнитных кристаллов в переменных магнитных полях с учетом структуры ферромагнитных областей и получили формулу для ферромагнитного резонанса. Позже Киттель [40], обобщив результаты исследования Ландау и Лифшица, учел действие поверхности образца и магнитной анизотропии и получил для резонансной частоты формулу

где — гиромагнитное отношение элементарных носителей магнитного момента, постоянное магнитное поле, направленное по оси составляющая намагниченности насыщения вдоль этого направления, размагничивающие факторы вдоль осей члены, учитывающие влияние магнитной анизотропии.

В частном случае, когда, например, образец представляет собой тонкую пластинку и поле направлено параллельно плоскости пластинки, Пренебрегая поправками на анизотропию формулу (14.1) запишем

Если внешнее поле направлено перпендикулярно плоскости пластинки, то Резонансная частота определяется в этом случае так:

Для образца в форме шара имеем

Поправочные члены в общем случае имеют сложный вид [4, 5], но для кристаллов кубической формы, если плоскость совпадает с плоскостью [001], эти члены определяют по следующим простым формулам:

где угол между полем и направлением [001], а постоянная анизотропии.

Формулы (14.5) дают возможность определить константу анизотропии.

Ферромагнитный резонанс во внешнем магнитном поле в никеле и железо-кремневых сплавах изучал Завойский [18], который создал высокочувствительную установку, основанную на методе вариации потерь в контуре. Почти одновременно этот эффект в ферромагнитных металлах обнаружил Гриффите [41]. Он применял для этой цели волновод с полым резонатором. В дальнейшем это явление было исследовано в других металлах и в ферромагнитных полупроводниках — ферритах [31, 42—46]. В этих и многих других работах определяли ширину резонансной линии и ее изменение с температурой и рассчитывали гиромагнитное отношение у или значение фактора Ланде Оказалось, что между значениями определенными из опытов по ферромагнитному резонансу и из гиромагнитных опытов, есть расхождение. В последнее время ферромагнитный резонанс исследовали в ферромагнетиках нового типа, ферритах со структурой граната [47, 78]. У ферритов-гранатов обнаружена самая узкая ширина резонансной линии

Ферромагнитный резонанс можно исследовать при помощи резонансной полости, в которую помещают исследуемый металл в форме пластинки или образец из его порошка. При этом производят измерение добротности полости. На рис. 111 показана принципиальная схема установки для исследования ферромагнитного резонанса, которая была применена в работе [44].

Источником высокочастотных колебаний является клистронный генератор 1. Прямоугольные колебания подают на отражатель, который модулирует высокочастотные колебания. Калиброванный аттенюатор 3 регулирует амплитуду этих колебаний, которые частично отражаются резонансной полостью, расположенной на одном конце волновода. Отраженная мощность микроволнового

излучения поступает в кристаллический детектор 12 через направленный ответвитель 4 и выпрямляется. Затем выпрямленный сигнал проходит через узкополосный усилитель 14 и синхронизированный детектор.

При отражении высокочастотных колебаний от резонансной полости образуются стоячие волны, коэффициент которых можно измерить при помощи индикатора стоячих волн.

Рис. 111. Блок-схема установки для изучения ферромагнитного резонанса: 1 — клистрон, 2 — генератор прямоугольных колебаний, 3 — калиброванный аттенюатор, 4 — направленный ответвитель, 5 — индикатор стоячей волны, 6 — слюдяное окошко, 7 — трубка, соединяющаяся с насосом, 8 — охлаждающая водяная рубашка, 9 — полюсные наконечники электромагнита, 10 — резонансная полость, 11 — печь, 12 — кристаллический детектор, 13 — аттенюатор, 14 — узкополосный усилитель, 15 — синхронизированный усилитель, 16 — спектральный анализатор, 17 — катодный осциллограф, 18 — исследуемый образец

Для определения частотных характеристик кристаллического детектора 12 и усилителя 15 используют калиброванный аттенюатор 3. В случае необходимости высокочастотные колебания можно направить в спектральный анализатор 16, где с помощью волномера измеряется частота. Резонансная полость 10 прямоугольного сечения является частью волновода. С одной стороны она заканчивается пластиной из ферромагнитного материала, а с другой — связана с окошком волновода, через который можно возбуждать колебания определенного типа. Следует отметить, что размеры диафрагмы (окошка) выбирают таким образом, чтобы резонансная полость имела слабую связь с волноводом. Отраженная мощность излучения должна составлять 10—20% падающей мощности.

Резонансную полость с образцом помещают в пространство между полюсами 9 электромагнита, создающего постоянное магнитное поле напряженностью до 1,6» 106 а/л. Ширина зазора между полюсами электромагнита позволяет поместить там резонансную полость вместе с печью 11 для проведения исследования при различных температурах. Температуру измеряют с помощью

платино-родиевой термопары, один конец которой прикреплен к торцовой стенке резонансной полости. Для предохранения стенок полости от окисления в ней создан вакуум порядка

Волновод охлаждается проточной водой, которая протекает через охладительную рубашку.

При проведении эксперимента необходимо особое внимание уделить изготовлению образца из исследуемого материала. При этом следует помнить, что образцы не должны иметь внутренних напряжений и поверхностных загрязнений, так как глубина проникновения высокочастотного электромагнитного поля равна приблизительно Для изготовления образцов можно использовать электролитическую фольгу толщиной После того как из фольги будут вырезаны образцы нужных размеров, их припаивают золотом к держателю из меди, имеющему вид диска, и подвергают температурному отжигу в течение часа при -Затем образец вместе с печью медленно охлаждается до комнатной температуры. Чтобы поверхность образца была гладкой, ее полируют. После всех этих операций образец припаивают серебром к концу волновода. Следует помнить, что припой не должен проникать на внутреннюю поверхность стенок волновода. Поэтому пайку следует проводить аккуратно и желательно в атмосфере очищенного водорода. Чтобы убедиться в правильности проведенной пайки, нужно провести исследование с другой полостью, в которой образец плотно прижимается к узкому краю стенки волновода. При измерениях частота медленно изменяется до тех пор, пока минимальное отражение в направленный ответвитель не покажет на резонанс в полости. Коэффициент стоячей волны напряжения в момент резонанса выражается так:

где и - потери в медной и ферромагнитной стенках, - внешняя добротность, которая определена как отношение запасенной энергии к энергии, расходуемой на внешней нагрузке, добротность ненагруженной полости.

Для вычисления коэффициента стоячей волны можно также использовать формулу

где отраженная мощность на выходе направленного ответвителя.

При применении последней формулы не нужно знать зависимость в функции постоянного магнитного поля Но при различных температурах. В этом случае при каждом цикле измерения измеряется индикатором стоячей волны только при двух значениях В других точках определяют только Нахождение

коэффициента стоячей волны последним методом дает более точные результаты, особенно вблизи максимума поглощения, где становится очень большим. Полную добротность полости определяют по измерению зависимости коэффициента стоячей волны напряжения от частоты. Применяя соотношение (14.6) и формулу

можно найти

Добротность вычисляют из геометрических размеров резонансной полости и из данных проводимости меди. Тогда, используя формулу (14.6), можно рассчитать а для вычисления проницаемости применить формулу

где добротность стенки при условии, что ее проницаемость равна единице.

Вычисление по формуле (14.9) дает значение этой величины, которое отличается от истинного раза в три и более, что связано с большой ошибкой в определении Такая погрешность является результатом различных дефектов на поверхности образца, потерь в местах припоя и в зажимных соединениях. Чтобы избежать этих ошибок, обычно берут два значения проницаемости которые соответствуют двум значениям магнитного поля Но и Но, и для них определяют коэффициенты стоячей волны Тогда из соотношений (14.6) и (14.9) можно получить выражение следующего вида:

За эталонное значение берут предельное значение проницаемости для больших значений магнитных полей Но. Ошибка, при определении абсолютных значений этим методом довольно велика и может достигнуть

Установка, показанная на рис. не дает возможности вести измерения при различных частотах и, как уже отмечалось выше, имеет сравнительно невысокую точность измерения.

Лазукин для изучения ферромагнитного резонанса применил метод, основанный на использовании стоячих волн внутри коаксиального волновода, куда помещают исследуемый образец. Этот метод в некоторой мере устраняет отмеченные выше недостатки. У коаксиального волновода отсутствует излучение электромагнитной волны во внешнее пространство и его можно использовать в широком диапазоне частот. Измерительная линия в этой

установке состояла из латунной трубки с внутренним диаметром Вдоль оси этой трубки расположен стержень диаметром Один конец трубки соединен с генератором сантиметровых волн, на другом ее конце находится исследуемый образец, который вставлен внутрь линии. Генератор подключали к измерительной линии с помощью коаксиального кабеля или специальной генераторной головки.

Для получения лучшей стабильности частоты осуществлялась двойная стабилизация питающего напряжения: ферромагнитным и электронным стабилизаторами. Это давало возможность поддерживать частоту клистрона с точностью до 0,1%. Чтобы нагрузка в линии не влияла на режим работы генератора, между нагрузкой и генератором вводили поглощающее сопротивление, которое обеспечивало нужную развязку. Измерительная линия на протяжении имела узкую щель, через которую в полость вводили зонд, укрепленный на каретке. Каретка могла свободно перемещаться вдоль щели с помощью микрометрического винта. Положение каретки и зонда отсчитывали с точностью до

Энергия резонатора отсасывалась прямоугольной петлей и подавалась на высокочастотный кристаллический детектор, который был соединен с высокочувствительным гальванометром. При погружении зонда в измерительную полость изменение интенсивности колебаний не наблюдалось до глубины погружения, а форма волны заметно искажалась только при погружении зонда на

Исследуемое вещество применяли в виде порошков и лент. Из мелкодисперсного порошка — ферромагнетика и диэлектрика приготовляли смесь, из которой затем изготовляли нужной формы образец. Размеры зерен порошка не превышали а объемная концентрация ферромагнитной компоненты составляла 60—70%. Такие условия обеспечивали изоляцию зерен друг от друга.

Для определения комплексной магнитной проницаемости измеряли коэффициент стоячей волны смещение узлов длину волны и толщину образца Измерение длины волны производили по двум узлам стоячей волны напряжения. Положение узла отмечали как среднее между двумя положениями зонда по обе стороны узла в тот момент, когда ток через детектор имел одинаковое значение. Два последовательных положения минимума позволяют определить смещение узлов стоячей волны Если коэффициент стоячей волны нельзя измерить непосредственно как отношение то он рассчитывается по формуле

где сила тока, измеренная в минимуме и на расстоянии х от узла.

Исследование резонансного поглощения производили в следующем порядке. Прежде всего образец помещали в измерительную линию около поршня и вместе с ней располагали между полюсами электромагнита. Не меняя частоту генератора, измеряли смещение узлов и коэффициент при нескольких значениях напряженности магнитного поля. Затем образец перемещали на расстояние четверти волны от поршня, опять устанавливали в прежнее положение между полюсами электромагнита и производили те же измерения.

Для расчета комплексной магнитной проницаемости используют формулу

где коэффициенты являются сложными функциями величин [27].

По формуле (14.12) можно точно определить Однако для вычисления этой величины по данной формуле необходимо много времени. Можно получить приближенное, но более простое выражение для определения разлагая в в ряд и ограничась первым членом разложения. В этом случае действительная и мнимая части комплексной проницаемости записываются так:

После дальнейшего упрощения получим

Эксперимент показывает, что кривые, полученные по точной формуле (14.12) и по приближенным (14.15), дают одно и то же значение резонансного поля.

В заключение рассмотрим высокочувствительную схему, основанную на использовании разделительного кольца [28]. Эта схема позволяет наблюдать ферромагнитный резонанс на частоте На рис. 112 показана блок-схема установки.

Как видно из рисунка, мощность микроволнового излучения от клистронного генератора 1 подается через плечо на разделительное кольцо 2. В кольце мощность делится на две части, которые поступают в плечи II и IV. В плече II имеется волновод с поршнем, к которому прикрепляли исследуемый образец. Отраженная мощность в плече II делится между плечами и III. В плечах III находится детектор. Ферритовые вентили 12, находящиеся в плечах развязывают генератор от разделительного кольца и не дают возможности пропускать отраженную мощность от трактов III и IV. Для получения постоянного магнитного поля напряженностью до используют электромагнит, полюсные наконечники которого имеют диаметр

Рис. 112. Блок-схема установки с разделительным кольцом для исследования ферромагнитного резонанса: 1 — генератор, 2 — разделительное кольцо, которое заменяет двойной тройник, 3 — отрезок волновода с поршнем и образцом, 4-датчик измерителя поля, 5 — детектор, 6 — протонный измеритель напряженности поля, 7 — усилитель низкой частоты, 8 — осциллограф, 9 — электромагнит, 10 — волномер, 11 — согласователи, 12 — ферритовые вентили, 13 — держатель образца, 14 — исследуемый образец, 15 — модулирующие катушки

Кривые резонансного поглощения наблюдают на экране осциллографа, развертка луча которого синхронизирована с частотой модулирующего поля, создаваемой катушками 15. Исследуемые образцы можно использовать или в виде полушара (монокристаллы) диаметром от 2 до или в форме шариков (поликристаллы) диаметром от 1 до Эта установка позволяет исследовать ферромагнитный резонанс как при комнатных, так и при низких температурах.

Как мы уже отмечали, ширина резонансной кривой поглощения показывает зависимость поглощаемой мощности в исследуемом образце от величины постоянного магнитного поля. Эту величину определяют ядерным или парамагнитным датчиком, который помещают в магнитном поле рядом с образцом. На кривой поглощения, наблюдаемой на экране осциллографа, есть метка датчика, соответствующая кривой поглощения ядерного или парамагнитного

резонанса. Эта метка и дает возможность измерить ширину кривой поглощения.

В работе [6] разработан метод определения ширины линии по изменению частоты высокочастотных колебаний. Для этой цели применяют эхорезонатор, метка от которого находится также на кривой поглощения. Этот способ измерения ширины линии в основном применяют для измерения очень узких кривых поглощения.

<< Предыдущий параграф Следующий параграф >>
Оглавление