Главная > Физика > Курс статистической физики (Ноздрев В.Ф.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ЧАСТЬ I. ЭЛЕМЕНТАРНАЯ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

Глава III. КЛАССИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА

§ 1. Модель идеального газа

Часто встречающийся в физике идеальный газ является определенной моделью вещества, которая вводится для объяснения простейших свойств некоторых реальных физических систем (реального газа, электронов в металле и др.).

Идеальный газ представляют как систему свободных невзаимодействующих частиц, находящихся в непрерывном хаотическом движении. Взаимодействие частиц идеального газа проявляется только в их упругих столкновениях.

Частицы идеального газа принимают за твердые шарики, размер которых намного меньше среднего расстояния между ними. Промежуток времени между столкновениями при этом оказывается много больше, чем время самих столкновений. Следовательно, большую часть времени частицы движутся в газе равномерно и прямолинейно.

Благодаря беспорядочному движению частицы идеального газа очень часто сталкиваются друг с другом. Эти столкновения частиц между собой приводят к ряду интересных следствий.

Во-первых, разлетаясь после столкновений в разные стороны, частицы из выделенной группы будут постепенно рассеиваться в пространстве, занимая в конце концов бесконечно большой объем. Поэтому в большинстве" случаев идеальный газ рассматривают внутри некоторого объема, т. е. ограниченный стенками сосуда. Частицы, встречая

на своем пути стенки сосуда будут по законам упругого удара отражаться от них, передавая стенке определенное количество движения (импульс силы). Следствием этого является давление, оказываемое газом на стенку.

Во-вторых, столкновения частиц газа между собой приводят к тому, что они непрерывно обмениваются энергией, изменяют свои скорости и координаты внутри объема. Благодаря Этому в газе при постоянных внешних параметрах устанавливается равновесное состояние, которому соответствует определенное распределение частиц в пространстве, по направлениям движения и по скоростям. Любые отклонения от такого равновесного состояния сглаживаются благодаря непрерывному хаотическому движению и столкновениям частиц. За сравнительно короткое время (время релаксации) газ снова приходит в равновесное состояние. Рассматривая газ, при постоянных внешних параметрах, за промежутки времени, большие времени релаксации, мы можем считать его состояние равновесным. Некоторые же вопросы, связанные с неравновесными процессами, будут рассмотрены в IV главе.

Если идеальный газ находится в равновесном состоянии при отсутствии внешних сил, то его частицы заполняют весь объем с постоянной плотностью. Число частиц, заключенных в некотором интересующем нас объеме V, буяет определяться по формуле

где — число частиц в единице объема, равное отношению всего числа частиц ко всему занятому газом объему:

Столкновения частиц приводят не только к установлению в газе одинаковой плотности, но и к равномерному распределению в пространстве направлений движения частиц. Сколько частиц движется в одном направлении, столько же в среднем движется и в любом Другом, в том числе и противоположном направлении. В результате такой равноправности направлений движения давление в идеальном газе оказывается изотропным.

При равновесии в газе устанавливается также и определенное распределение частиц по скоростям. При этом средние скорости и число частиц, движущихся в разных направлениях, оказываются одинаковыми, о чем свидетельствует отсутствие направленного потока газа при равновесии.

Для рассматриваемой модели идеального газа легко найти зависимость между давлением и объемом.

Пусть идеальный газ находится в сосуде, имеющем форму шара с радиусом . В этом случае частиц, находящихся в объеме оказывают давление на поверхность

Рис. 8. К выводу закона Бойля — Мариотта по М. В. Ломоносову

Затем сожмем это количество газа так, чтобы он занимал объем шара с вдвое меньшим радиусом т. е. . Если скорости движения частиц останутся прежними, то те же удары частиц будут теперь приходиться на вчетверо меньшую поверхность вследствие чего давление должно возрасти в 4 раза. С другой стороны, из-за уменьшения объема средний путь частицы между столкновениями будет вдвое меньше, что приведет при той же скорости движения молекул к увеличению вдвое числа столкновений в единицу времени, т. е. и со стенкой частицы будут сталкиваться вдвое чаще. Таким образом, при уменьшении объема идеального газа в 8 раз давление должно возрасти также в 8 раз. Это и есть закон Бойля — Мариотта:

Приведенный здесь вывод этого закона был еще в 1745 г. предложен Ломоносовым.

Рассмотренная модель идеального газа при определенных условиях объясняет многие свойства реального газа, т. е. простейшего газообразного состояния вещества.

Существует следующий критерий применимости модели идеального газа к реальному газу. Если поведение реального газа удовлетворяет закону Бойля — Мариотта, то газ можно рассматривать как идеальный. Например, воздух при нормальных условиях можно рассматривать как идеальный газ. Поэтому дальнейшие выводы, которые будут получены на основании свойств модели идеального газа, можно распространять и на реальные газы. Вместо частиц идеального газа далее будем рассматривать молекулы реального газа.

<< Предыдущий параграф Следующий параграф >>
Оглавление