Главная > Физика > Курс статистической физики (Ноздрев В.Ф.)
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 6. Распределение Максвелла-Больцмана

Для идеального газа функцию Гамильтона можно просто заменить энергией и тогда по формуле (6.2) вероятность нахождения системы с энергией в элементе фазового пространства будет:

Для системы невзаимодействующих частиц энергию можно представить как сумму энергий отдельных частиц Тогда вероятность (6.28) можно разбить на сомножителей

Интегрируя переменной всех частиц, кроме 1-й, получим выражение вероятности для частицы:

Здесь рассматривается как функция 6 переменных Распределение (6.30) можно

рассматривать в -мерном фазовом пространстве одной молекулы, которое называют -пространством ( от слова молекула).

Энергия отдельной частицы может быть представлена суммой кинетической и потенциальной энергий, зависящих от импульса и координат частицы, соответственно:

Подставляя это выражение в (6.30), получим:

Это и есть распределение Максвелла — Больцмана.

Тот факт, что кинетическая и потенциальная энергии зависят от разных переменных, дает возможность рассмотреть одно распределение (6.32) как два независимых распределения в трехмерном пространстве импульсов и в трехмерном пространстве координат:

Здесь постоянные, определяемые из условия нормировки распределений.

Распределение (6.33) по импульсам совпадает с максвелловским распределением (3.22) для идеального газа. Но следует отметить, что полученное здесь распределение по импульсам не зависит от характера взаимодействия частиц системы, так как энергию взаимодействия всегда можно внести в потенциальную энергию частицы. Другими словами, максвелловское распределение по скоростям пригодно для частиц любых классических систем: газов, жидкостей и твердых тел.

Если за мельчайшие частицы рассматривать молекулы или атомы, составляющие молекулы, то для них также справедливо максвелловское распределение. Однако уже для электронов в атоме или в металле, или для других квантовых

систем максвелловское распределение не будет справедливо, так как оно является следствием классической статистики.

Функция распределения по координатам частицы (6.34) в потенциальном поле представляет так называемое распределение Больцмана (1877 г.).

Для случая, когда потенциальная энергия зависит только, от одной переменной, например можно проинтегрировать (6.34) по двум другим переменным и получить (с учетом нормировки) выражение:

Для идеального газа в однородном поле силы тяжести из (6.35) выводится известная барометрическая формула. Действительно, в этом случае и функция распределения частиц по высоте принимает вид:

Вследствие пропорциональности числа частиц функции распределения (6.36) получим следующее распределение числа частиц в единице объема по высоте (рис. 30):

Поскольку при в единице объема будет частиц, то для распределения частиц по высоте получим:

Если учесть, что в газе давление пропорционально плотности, то из (6.37) получается барометрическая формула

Рис. 30. Изменение числа частиц в единице объема с изменением высоты согласно распределению Больцмана

Экспериментальные исследования показали, что на больших высотах в атмосфере наблюдаются отклонения числа частиц от распределения, описываемого формулой (6.37), связанные с неоднородным составом атмосферы, с различием температур на разных высотах и с тем, что атмосфера не находится в состоянии равновесия.

В атмосферах планет происходит явление рассеяния атмосферы в космическое пространство. Оно объясняется тем, что всякая частица, имеющая скорость больше второй космической для данной планеты, может покинуть атмосферу планеты. В газе, как следует из макевелловского распределения, всегда имеется некоторая доля молекул с очень большими скоростями, уход которых и определяет постепенное рассеяние верхних слоев атмосферы. Рассеяние атмосферы планет происходит тем быстрее, чем меньше масса планеты и выше ее температура. Для Земли этот эффект оказывается ничтожно малым, а планета Меркурий и Луна уже потеряли таким способом свои атмосферы.

<< Предыдущий параграф Следующий параграф >>
Оглавление