Главная > Физика > Курс общей физики, Т.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 34. Сила Кориолиса

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы инерции, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции.

Появление вориолисовой силы можно обнаружить на следующем примере. Возьмем Горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 34.1, а). Запустим в направлении от шарик со скоростью V. Если диск не вращается, шарик будет катиться вдоль прочерченной нами прямой. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться но изображенной пунктиром кривой ОВ, причем его скорость относительно диска v будет изменять свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила , перпендикулярная к скорости

Чтобы заставить шарик катиться по вращающемуся диску Вдоль радиальной прямой; нужно сделать направляющую, например, в виде ребра ОА (рис. 34.1, б). При качении шарика направляющее ребро действует на него с некоторой силой Относительно вращающейся системы (диска) шарик движется с постоянной по направлению скоростью. Это можно формально объяснить тем, что сила уравновешивается приложенной к шарику силой инерции перпендикулярной к скорости V. Сила и есть корволиеова сила инерции.

Рис. 34.1.

Найдем сначала выражение силы Кориолиса для частного случая, когда частица движется относительно вращающейся системы отсчета равномерно по окружности, лежащей в плоскости, перпендикулярной к оси вращения, с центром, находящимся на этой оси (рис. 34.2). Скорость частицы относительно вращающейся системы обозначим v. Скорость частицы относительно неподвижной (инерциальной) системы отсчета v равна по величине в случае (в) и в случае (б) , где — угловая скорость вращающейся системы, R — радиус окружностй (см. (5.7)).

Рис. 34.2.

Для того чтобы частица двигалась относительно неподвижной системы по окружности со скоростью на нее должна действовать направленная к центру окружности сила , например, сила натяжения нити, которой частица привязана к центру окружности (см. рис. 34.2, а). Величина этой силы равна

Относительно вращающейся системы частица в этом случае движется с ускорением т. е. так, как если бы на нее действовала сила

(см. (34.1)). Таким образом, во вращающейся системе частица ведет себя так, как если бы на нее, кроме направленной к центру окружности силы F, действовали еще две направленные от центра силы: и сила модуль которой равен (рис. 34.2, а). Легко сообразить, чтосклу можно представить в виде

Сила (34.3) и есть кориолисова сила инерции. При эта сила отсутствует. Сила не зависит — она, как мы уже отмечали, действует как на покоящиеся, так и на движущиеся тела.

В случае, изображенном на рис. 34.2, б,

Соответственно

Следовательно, во вращающейся системе частица ведет себя так, как если бы на нее действовали две направленные к центру окружности силы: F и а также направленная от центра сила (см. рис. 34.2, б). Сила и в этом случае может быть представлена в виде (34.3).

Рис. 34.3.

Теперь перейдем к нахождению выражения силы Кориолиса для случая, когда частица движется относительно вращающейся системы отсчета произвольным образом. Свяжег с вращающейся системой координатные оси причем ось совместим с осью вращения (рис. 34.3). Тогда радиус-вектор частицы можно представить в виде

где — орты координатных осей. Орты и вращаются вместе с системой отсчета с угловой скоростью , орт остается неподвижным.

Положение частицы относительно неподвижной системы следует определять с помощью радиуса-вектора . Однако символы обозначают один и тот же вектор, проведенный из начала координат к частице. Символом обозначил этот вектор наблюдатель, «живущий» во вращающейся системе отсчета; по его наблюдениям орты неподвижны, поэтому при дифференцировании выражения (34.4) он обращается с этими ортами как с константами. Символом пользуется неподвижный наблюдатель; для него орты и вращаются со скоростью со (орт неподвижен). Поэтому при дифференцировании равного выражения (34.4) неподвижный наблюдатель должен обращаться с как с функциями t, производные которых равны:

(см. рис. 34.3 и формулу (2.56); орт перпендикулярный к равен орт перпендикулярный к равен . Для вторых производных ортов по времени получаются выражения:

(34.6)

Найдем скорость частицы относительно вращающейся системы отсчета. Для этого продифференцируем радиус-вектор (34.4) по времени, считая орты константами:

(34.7)

Повторное дифференцирование этого выражения даст ускорение частаты относительно вращающейся системы отсчета:

Теперь найдем скорость частицы относительно неподвижной системы отсчета. Для этого продифференцируем радиус-вектор (34.4) «с позиций» неподвижного наблюдателя. Воспользовавшись обозначением вместо (Напомним, что ), получше:

Продифференцировавать это выражение еще раз по t, найдем ускорение частицы относительно неподвижней системы:

Приняв во внимание формулы (34.5), (34.б) и (34.8), полученное соотношение можно преобразовать к виду:

Рассмотрим векторное произведение Представим ею в виде определителя (см. (2.33)):

(34.11)

Согласно кроме того, при выбранном нами направлении координатных осей Подстановка этих значений в (34.11) дает

(34.12)

Полученный результат показывает, что второй член формулы: (34.10) можно записать в виде Выражение, стоящее в скобках в последнем члене формулы (34.10), равно перпендикулярной к оси вращёння (к оси ) составляющей радиуса-вектора (см. (34.4)). Обозначим эту составляющую символом R (ср. с рис. 5.5). С учетом всего сказанного соотношение (34.10) можно зависать следующим образом:

(34.13)

Из (34.13) вытекает, что ускорение частицы относительно ненедвижной системы отсчета можно представить в виде суммы трех ускорений: ускорения относительно вращающейся системы , ускорения, равного и ускорения

(34.14)

которое называется кориолисовым ускорением.

Для того чтобы частица двигалась с ускорением (34.13), На нее должны действовать какие-то тела с результирующей силой . Согласно (34.13)

(34.15)

(перестановка сомножителей изменяет знак векторного произведения). Полученный результат означает, что при составлении уравнения второго закона Ньюгона во вращающейся системе отсчета, кроме сил взаимодействия, нужно учитывать центробежную силу инерции. определяемую формулой (33.2), а также «эриолисову силу, которая и в самом общем случае определяется формулой (34.3).

Рис. 34.4.

Рис. 34.5.

Отметим, что сила Кориолиса всегда лежит в плоскости, перпендикулярной к оси вращения.

Из сопоставления формул (34.9), (34.7) и (34.5) вытекает, что

С помощью выкладок, аналогичных тем, которые привели нас к соотношению (34.13), можно убедиться в том, что последний член полученного выражения равен . Следовательно,

(34.16)

При эта формула переходит в (5.8).

Примеры движения, в которых проявляется корнолисова сила инерции. При истолковании явлений, связанных с движением тел относительно земной поверхности, в ряде случаев необходимо учитывать влияние кориолисовых сил. Например, при свободном падении тел на них действует корнолисова сила, обусловливающая отклонение к востоку от линии отвеса (рис. 34.4). Эта сила максимальна на экваторе и обращается в нуль на полюсах.

Летящий снаряд также испытывает отклонения, обусловленные кориолисовыми силам инерции (рис. 34.5). При выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарий и к западу — в южном. При стрельбе вдоль меридиана на юг направления отклонения будут противоположными. При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Земле, если выстрел произведен в направлении на запад, и поднимать его кверху, если выстрел произведен в восточном направлении. Предоставь ляем читателю самому убедиться в том, что сила Кориолиса, действующая на тело, движущееся вдоль меридиана в любом Направлении (на север или на юг), направлена по отношению к. направлению движения, вправо в северном полушарии и влево в южном полушарии. Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый берег в южном полушарии. Эти же причины объясняют неодинаковый износ рельсов При двухколейном движении.

Рис. 34.6.

Силы Кориолиса проявляются и при качаниях маятника. На рис. 34.6 показана траектория груза маятника (для простоты предположено, что маятник находится на полюсе). На северном полюсе сила Кориолиса будет все время направлена вправо по ходу маятника, на южном полюсе — влево. В итоге траектория имеет вид розетки.

Как следует из рисунка, плоскость качаний маятника поворачивается относительно Земли в направлении насовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так, что плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот. Можно показать, что на широте плоскость качаний маятника Поворачивается за сутки на угол .

Таким образом, наблюдения за вращением плоскости качаний Маятника (маятники, предназначенные для этой цели, называются маятниками Фуко) дают непосредственное доказательство вращения Земли вокруг своей оси.

<< Предыдущий параграф Следующий параграф >>
Оглавление