Главная > Физика > Курс общей физики, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА III. ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

§ 24. Равновесие зарядов на проводнике

Носители заряда в проводнике способны перемещаться под действием сколь угодно малой силы. Поэтому для равновесия зарядов на проводнике необходимо выполнение следующих условий:

1. Напряженность поля всюду внутри проводника должна быть равна нулю,

В соответствии с (8.2) это означает, что потенциал внутри проводника должен быть постоянным ).

2. Напряженность поля на поверхности проводника должна быть в каждой точке направлена по нормали к поверхности:

Следовательно, в случае равновесия зарядов поверхность проводника будет эквипотенциальной.

Если проводящему телу сообщить некоторый заряд q, то он распределится так, чтобы соблюдались условия равновесия. Представим себе произвольную замкнутую поверхность, полностью заключенную в пределах тела. При равновесии зарядов поле в каждой точке внутри проводника отсутствует; поэтому поток вектора электрического смещения через поверхность равен нулю. Согласно теореме Гаусса сумма зарядов внутри поверхности также будет равна нулю. Это справедливо для поверхности любых размеров, проведенной внутри проводника произвольным образом. Следовательно, при равновесии ни в каком месте внутри проводника не может быть избыточных зарядов — все они распределятся по поверхности проводника с некоторой плотностью о.

Поскольку в состоянии равновесия внутри проводника избыточных зарядов нет, удаление вещества из некоторого объема, взятого внутри проводника, никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т. е. по его наружной поверхности.

На поверхности полости в состоянии равновесия избыточные заряды располагаться не могут. Этот вывод вытекает также из того, что одноименные элементарные заряды, образующие данный заряд q, взаимно отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Представим себе небольшую цилиндрическую поверхность, образованную нормалями к поверхности проводника и основаниями величины dS, одно из которых расположено внутри, а другое вне проводника (рис. 24.1). Поток вектора электрического смещения через внутреннюю часть поверхности равен нулю, так как внутри проводника Е, а значит и D, равно нулю. Вне проводника в непосредственной близости к нему напряженность поля Е направлена по нормали к поверхности. Поэтому для выступающей наружу боковой поверхности цилиндра а для внешнего основания (внешнее основание предполагается расположенным очень близко к поверхности проводника). Следовательно, поток смещения через рассматриваемую поверхность равен , где D — величина смещения в непосредственной близости к поверхности проводника. Внутри цилиндра содержится сторонний заряд ( — плотность заряда в данном месте поверхности проводника). Применив теорему Гаусса, получим: Отсюда следует, что напряженность поля вблизи поверхности проводника равна

где — диэлектрическая проницаемость среды, окружающей проводник (ср. с формулой (14.6), полученной для случая )

Рис. 24.1.

Рассмотрим поле, создаваемое изображенным на рис. 24.2 заряженным проводником. На больших расстояниях от проводника эквипотенциальные поверхности имеют характерную для точечного заряда форму сферы (на рисунке из-за недостатка места сферическая поверхность изображена на небольшом расстоянии от проводника; пунктиром показаны линии напряженности поля). По мере приближения к проводнику эквипотенциальные поверхности становятся все более сходными с поверхностью проводника, которая является эквипотенциальной. Вблизи выступов эквипотенциальные поверхности располагаются гуще, значит, и напряженность поля здесь больше. Отсюда следует, что плотность зарядов на выступах особенно велика (см. (24.3)). К такому же выводу можно прийти, учтя, что из-за взаимного отталкивания заряды стремятся расположиться как можно дальше друг от друга.

Вблизи углублений в проводнике эквипотенциальные поверхности расположены реже (см. рис. 24.3). Соответственно напряженность поля и плотность зарядов в этих местах будут меньше. Вообще, плотность зарядов при данном потенциале проводника определяется кривизной поверхности — она растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика бывает плотность зарядов на остриях. Поэтому напряженность поля вблизи остриев может быть настолько большой, что возникает ионизация молекул газа, окружающего проводник.

Рис. 24.2.

Рис. 24.3.

Ионы иного знака, чем q, притягиваются к проводнику и нейтрализуют его заряд. Ионы того же знака, что и q, начинают двигаться от проводника, увлекая с собой нейтральные молекулы газа. В результате возникает ощутимое движение газа, называемое электрическим ветром. Заряд проводника уменьшается, он как бы стекает с острия и уносится ветром. Поэтому такое явление называют истечением заряда с острия.

<< Предыдущий параграф Следующий параграф >>
Оглавление