Главная > Физика > Курс общей физики, Т.3
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 9. Фотоэффект

Фотоэлектрическим эффектом или фотоэффектом называется испускание электронов веществом под действием света. Это явление было открыто Г. Герцем в 1887 г. Он заметил, что проскакивание искры между шариками разрядника значительно облегчается, если один из шариков осветить ультрафиолетовыми лучами.

В 1888—1889 гг. А. Г. Столетов подверг фотоэффект систематическому исследованию с помощью установки, схема которой показана на рис. 9.1. Конденсатор, образованный проволочной сеткой и сплошной пластиной, был включен последовательно с гальванометром G в цепь батареи. Свет, проходя через сетку, падал на сплошную пластину. В результате в цепи возникал ток, регистрировавшийся гальванометром. На основании своих опытов Столетов пришел к следующим выводам: 1) наибольшее действие оказывают ультрафиолетовые лучи; 2) сила тока возрастает с увеличением освещенности пластины; 3) испускаемые под действием света заряды имеют отрицательный знак.

Спустя 10 лет (в 1898 г.) Ленард и Томсон, измерив удельный заряд испускаемых под действием света частиц, установили, что эти частицы являются электронами.

Ленард и другие исследователи усовершенствовали прибор Столетова, поместив электроды в эвакуированный баллон (рис. 9.2). Свет, проникающий через кварцевое окошко освещает катод К, изготовленный из исследуемого материала. Электроны, испущенные вследствие фотоэффекта, перемещаются

Рис. 9.1.

Рис. 9.2.

Рис. 9.3.

под действием электрического поля к аноду А. В результате в цепи прибора течет фототок, измеряемый гальванометром G. Напряжение между анодом и катодом можно изменять с помощью потенциометра .

Полученная на таком приборе вольт-амперная характеристика (т. е. кривая зависимости фототока от напряжения между электродами U) приведена на рис. 9.3. Естественно, что характеристика снимается при неизменном потоке света Ф. Из этой кривой видно, что при некотором не очень большом напряжении фототок достигает насыщения — все электроны, испущенные катодом, попадают на анод. Следовательно, сила тока насыщения определяется количеством электронов, испускаемых катодом в единицу времени под действием света.

Пологий ход кривой указывает на то, что электроны вылетают из катода с различными по величине скоростями. Доля электронов, отвечающая силе тока при обладает скоростями, достаточными для того, чтобы долететь до анода «самостоятельно», без помощи ускоряющего поля. Для обращения силы тока в нуль нужно приложить задерживающее напряжение . При таком напряжении ни одному из электронов, даже обладающему при вылете из катода наибольшим значением скорости не удается преодолеть задерживающее поле и достигнуть анода.

Поэтому можно написать, что;

где m — масса электрона. Таким образом, измерив задерживающее напряжение , можно определить максимальное значение скорости фотоэлектронов.

К 1905 г. было выяснено, что максимальная скорость фотоэлектронов не зависит от интенсивности света, а зависит только от его частоты — увеличение частоты приводит к возрастанию скорости. Установленные экспериментально зависимости не укладываются в рамки классических представлений. Например, скорость фотоэлектронов по классическим понятиям должна возрастать с амплитудой, а, следовательно, и с интенсивностью электромагнитной волны.

В 1905 г. А. Эйнштейн показал, что все закономерности фотоэффекта легко объясняются, если предположить, что свет поглощается такими же порциями (квантами), какими он, по предположению Планка, испускается. По мысли Эйнштейна, энергия, полученная электроном, доставляется ему в виде кванта , который усваивается им целиком. Часть этой энергии, равная работе выхода А, затрачивается на то, чтобы электрон мог покинуть тело. Если электрон освобождается светом не у самой поверхности, а на некоторой глубине, то часть энергии, равная Е, может быть потеряна вследствие случайных столкновений в веществе. Остаток энергии образует кинетическую энергию электрона, покинувшего вещество. Энергия будет максимальна, если . В этом случае должно выполняться соотношение

которое называется формулой Эйнштейна.

Фотоэффект и работа выхода в сильной степени зависят от состояния поверхности металла (в частности, от находящихся на ней окислов и адсорбированных веществ). Поэтому долгое время не удавалось проверить формулу Эйнштейна с достаточной точностью. В 1916 г. Милликен создал прибор, в котором исследуемые поверхности подвергались очистке в вакууме, после чего измерялась работа выхода и исследовалась зависимость максимальной кинетической энергии фотоэлектронов от частоты света (эта энергия определялась путем измерения задерживающего потенциала ), Результаты оказались в полном согласии с формулой (9.2).

Подставив в формулу (9.2) измеренные значения А и (при данной ), Милликен определил значение постоянной Планка которое оказалось совпадающим со значениями, найденными из спектрального распределения равновесного теплового излучения и из коротковолновой границы тормозного рентгеновского спектра.

Дальнейшее усовершенствование методики исследования фотоэффекта было осуществлено в 1928 г. П. И. Лукирским и С. С. Прилежаевым, которые создали прибор в виде сферического конденсатора. Анодом в их приборе служили посеребренные стенки стеклянного сферического баллона. В центре баллона помещался катод в виде шарика. При такой форме электродов вольт-амперная характеристика идет круче, что позволяет повысить точность определения задерживающего потенциала.

Из формулы (8.2) вытекает, что в случае, когда работа выхода А превышает энергию кванта электроны не могут покинуть металл. Следовательно, для возникновения фотоэффекта необходимо выполнение условия , или

Соответственно для длины волны получается условие

Частота или длина волны называется красной границей фотоэффекта.

Число высвобождаемых вследствие фотоэффекта электронов должно быть пропорционально числу падающих на поверхность квантов света. Вместе с тем световой поток Ф определяется количеством квантов света, падаюших на поверхность в единицу времени. В соответствии с этим ток насыщения должен быть пропорционален падающему световому потоку:

Эта зависимость также подтверждается экспериментально. Заметим, что лишь малая часть квантов передает свою энергию фотоэлектронам. Энергия остальных квантов затрачивается на нагревание вещества, поглощающего свет.

В рассмотренном выше явлении фотоэффекта электрон получает энергию от одного лишь фотона. Такие процессы называются однофотонными. С изобретением лазеров были получены недостижимые до тех пор мощности световых пучков. Это дало возможность осуществить многофотонные процессы. В частности, был наблюден многофотонный фотоэффект, в ходе которого электрон, вылетающий из металла, получает энергию не от одного, а от N фотонов ().

Формула Эйнштейна в случае многофотонного фотоэффекта выглядит следующим образом:

Соответственно красная граница фотоэффекта смещается в сторону более длинных волн увеличивается в N раз). Формула (9.5) в случае -фотонного эффекта имеет вид

Кроме рассмотренного нами в этом параграфе внешнего фотоэффекта (называемого обычно просто фотоэффектом), существует также внутренний фотоэффект, наблюдаемый в диэлектриках и полупроводниках. О нем будет идти речь в § 65.

<< Предыдущий параграф Следующий параграф >>
Оглавление