Главная > Физика > Курс общей физики, Т.3
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 56. Сверхпроводимость

При температуре порядка нескольких кельвин электрическое сопротивление ряда металлов и сплавов скачком обращается в нуль — вещество переходит в сверхпроводящее состояние (см. § 34 2-го тома). Температура, при которой происходит этот переход, носит название критической температуры и обозначается . Наибольшее наблюдавшееся значение составляет .

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь, по которой идет ток, звено из сверхпроводника. В момент перехода в сверхпроводящее состояние разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже Тк, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Открывший явление сверхпроводимости голландский ученый Г. Камерлинг-Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствии уменьшения тока в течение двух с половиной лет.

Кроме отсутствия электрического сопротивления, для сверхпроводящего состояния характерно то, что магнитное поле не проникает в толщу сверхпроводника. Это явление называется эффектом Мейсснера. Если сверхпроводящий образец охлаждается, будучи помещенным в магнитное поле, в момент перехода в сверхпроводящее состояние поле выталкивается из образца, и магнитная индукция в образце обращается в нуль. Формально можно сказать, что сверхпроводник обладает нулевой магнитной проницаемостью Вещества с называются диамагнетиками. Таким образом, сверхпроводник является идеальным диамагнетиком.

Рис. 56.1.

Достаточно сильное внешнее магнитное поле разрушает сверхпроводящее состояние. Значение магнитной индукции, при котором это происходит, называется критическим полем и обозначается . Значение зависит от температуры образца. При критической температуре с понижением температуры значение возрастает, стремясь к — значению критического поля при нулевой температуре. Примерный вид этой зависимости показан на рис. 56.1.

Если усиливать ток, текущий через сверхпроводник, включенный в общую цепь, то при значении силы тока сверхпроводящее состояние разрушается. Это значение называют критическим током. Значение зависит от температуры. Вид этой зависимости аналогичен зависимости от Т (см. рис. 56.1).

Сверхпроводимость представляет собой явление, в котором квантовомеханические эффекты обнаруживаются не в микроскопических, а в крупных, макроскопических масштабах. Теория сверхпроводимости была создана в 1957 г. Дж. Бардином, Л. Купером и Дж. Шриффером. Ее называют кратко теорией БКШ. Эта теория очень сложна. Поэтому мы вынуждены ограничиться изложением ее на уровне научно популярных книг.

Разгадка сверхпроводимости заключается в том, что электроны в металле, кроме кулоновского отталкивания, испытывают особый вид взаимного притяжения, которое в сверхпроводящем состоянии преобладает над отталкиванием. В результате электроны проводимости объединяются в так называемые куперовские пары. Электроны, входящие в такую пару, имеют противоположно направленные спины.

Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в возбужденное состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости.

Поясним сказанное более подробно. Электрон, движущийся в металле, деформирует (поляризует) состоящую из положительных ионов кристаллическую решетку. В результате этой деформации электрон оказывается окруженным «облаком» положительного заряда, перемещающимся по решетке вместе с электроном. Электрон и окружающее его облако представляют собой положительно заряженную систему, к которой будет притягиваться другой электрон. Таким образом, кристаллическая решетка играет роль промежуточной среды, наличие которой приводит к притяжению между электронами.

На квантовомеханическом языке притяжение между электронами объясняется как результат обмена между электронами квантами возбуждения решетки — фононами. Электрон, движущийся в металле, нарушает режим колебаний решетки — возбуждает фононы. Энергия возбуждения передается другому электрону, который поглощает фонон. В результате такого обмена фоионами возникает дополнительное взаимодействие между электронами, которое имеет характер притяжения. При низких температурах это притяжение у веществ, являющихся сверхпроводниками, превышает кулоковское отталкивание.

Взаимодействие, обусловленное обменом фононами, наиболее сильно проявляется у электронов, обладающих противоположными импульсами и спинами. В результате два таких электрона объединяются в куперовскую пару. Эту пару не следует представлять себе как два слипшихся электрона. Напротив, расстояние между электронами пары весьма велико, оно составляет примерно см, т. е. на четыре порядка превышает межатомные расстояния в кристалле. Примерно 10е куперовских пар заметно перекрываются, т. е. занимают общий объем,

В куперовские пары объединяются не все электроны проводимости. При температуре Т, отличной от абсолютного нуля, имеется некоторая вероятность того, что пара будет разрушена. Поэтому всегда наряду с парами имеются «нормальные» электроны, движущиеся по кристаллу обычным образом. Чем ближе Т к Тк, тем доля нормальных электронов становится больше, обращаясь в 1 при Т = Тк. Следовательно, при температуре выше Тк сверхпроводящее состояние невозможно.

Образование куперовских пар приводит к перестройке энергетического спектра металла.

Для возбуждения электронной системы, находящейся в сверхпроводящем состоянии, надо разрушить хотя бы одну пару, на что требуется энергия, равная энергии связи электронов в паре. Эта энергия представляет собой минимальное количество энергии, которое может воспринять система электронов сверхпроводника. Следовательно, в энергетическом спектре электронов, находящихся в сверхпроводящем состоянии, имеется щель ширины расположенная в области уровня Ферми. Значения энергии, принадлежащие этой щели, запрещены. Существование щели было доказано экспериментально.

Итак, возбужденное состояние электронной системы, находящейся в сверхпроводящем состоянии, отделено от основного состояния энергетической щелью ширины Поэтому квантовые переходы этой системы не всегда будут возможными. При малых скоростях своего движения (отвечающих силе тока, меньшей ) электронная система не будет возбуждаться, а это и означает движение без трения, т. е. без электрического сопротивления.

Ширина энергетической щели с ростом температуры уменьшается и обращается в нуль при критической температуре . Соответственно все куперовские пары разрушаются, и вещество переходит в нормальное (несверхпроводящее) состояние.

Из теории сверхпроводимости следует, что магнитный поток связанный со сверхпроводящим кольцом (или цилиндром), по которому циркулирует ток, должен быть целым кратным величины где q — заряд носителя тока:

Величина

представляет собой квант магнитного потока.

Квантование магнитного потока было экспериментально обнаружено в 1961 г. Дивером и Фейрбэнком и независимо от них Доллом и Небауэром. В опытах Дивера и Фейрбэнка образцом служил поясок олова, нанесенный на медную проволоку диаметром около . Проволока играла роль каркаса и в сверхпроводящее состояние не переходила. Измеренные значения магнитного потока в этих опытах, как и в опытах Долла и Небауэра, оказались целыми кратными величины (56.1), в которой в качестве q надо взять удвоенный заряд электрона . Это служит дополнительным подтверждением правильности теории БКШ, согласно которой носителями тока в сверхпроводнике являются куперовские пары, заряд которых равен суммарному заряду двух электронов, т. е. .

<< Предыдущий параграф Следующий параграф >>
Оглавление