Главная > Физика > Курс общей физики, Т.3
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 75. Методы регистрации элементарных частиц

Элементарные частицы, а также сложные микрочастицы (a, d и т. п.), удается наблюдать благодаря тем следам, которые они оставляют при своем прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. Первую группу образуют устройства, которые регистрируют факт пролета частицы и, кроме того, позволяют в некоторых случаях судить об ее энергии. Ко второй группе относятся трековые приборы, т. е. приборы, позволяющие наблюдать следы (треки) частиц в веществе.

К числу регистрирующих приборов относятся ионизационные камеры и газоразрядные счетчики (см. § 82 2-го тома), а также черенковские счетчики (см. § 147 2-го тома), сцинтилляционные счетчики и полупроводниковые счетчики.

Действие сцинтилляционных счетчиков основано на том, что заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы возбуждают заметную световую вспышку (сцинтилляцию), называют фосфорами. Сцинтилляционный счетчик состоит из фосфора, от которого свет подается по специальному светопроводу к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов (которая пропорциональна интенсивности световых вспышек), что дает дополнительную информацию о регистрируемых частицах.

Полупроводниковый счетчик представляет собой полупро водниковый диод, на который подается напряжение такого знака, что основные носители тока оттягиваются от переходного слоя. Следовательно, в нормальном состоянии диод заперт. При прохождении через переходный слой быстрая заряженная частица порождает электроны и дырки, которые отсасываются к электродам.

В результате возникает электрический импульс, пропорциональный количеству порожденных частицей носителей тока.

Счетчики часто объединяют в группы и включают так, Чтобы регистрировались только такие события, которые отмечаются одновременно несколькими приборами, либо, напротив, только одним из них. В первом случае говорят, что счетчики включены по схеме совпадений, во втором — по схеме и совпадений. Применяя различные схемы включений, можно из множества явлений выделить то, которое представляет интерес. Например, два счетчика (pric. 75.1), установленные один за другим и включенные по схеме совпадений, зарегистрируют летящую вдоль их совместной оси частицу и не зарегистрируют частиц 2 и 3:

К числу трековых приборов относятся камеры Вильсона, диффузионные камеры, пузырьковые камеры, искровые камеры и эмульсионные камеры.

Камера Вильсона. Этот прибор создан английским физиком Ч, Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Прибор работает не непрерывно, а циклами. Сравнительно короткое время чувствительности камеры чередуется с мертвым временем (в 100—1000 раз большим), в течение которого камера готовится к следующему рабочему циклу. Пересыщение достигается за счет внезапного охлаждения, вызываемого резким (адиабатическим) расширением рабочей смеси, состоящей из неконденсирующегося газа (гелия, азота, аргона) и паров воды, этилового спирта и т. п. В этот же момент производится стереоскопическое (т. е. с нескольких точек) фотографирование рабочего объема камеры. Стереофотографии позволяют воссоздать пространственную картину зафиксированного явления. Так как отношение времени чувствительности к мертвому времени очень мало, приходится иногда делать десятки тысяч снимков, прежде чем будет зафиксировано какое-либо событие, обладающее небольшой вероятностью. Чтобы увеличить вероятность наблюдения редких явлений, используются управляемые камеры Вильсона, у которых работой расширительного механизма управляют счетчики частиц, включенные в электронную схему, выделяющую нужное событие.

Если поместить камеру Вильсона между полюсами электромагнита, ее возможности сильно расширяются.

Рис. 75.1.

По искривлению траектории, вызываемому действием магнитного поля, удается определить знак заряда частицы и ее импульс. В качестве примера фотографии, полученной с помощью камеры Вильсона, помещенной в магнитное поле, может служить рис. 77.3 (стр. 277), на котором видны треки электрона и позитрона.

Диффузионная камера. Как и в камере Вильсона, рабочим веществом в диффузионной камере является пересыщенный пар. Однако состояние пересыщения создается не адиабатическим расширением, а в результате диффузии паров спирта от находящейся при температуре ~ 10° С крышки камеры к охлаждаем мому твердой углекислотой (температура —70° С) дну. Недалеко от дна возникает слой пересыщенного пара, имеющий толщину в несколько сантиметров. В этом слое и образуются треки, В отличие от камеры Вильсона, диффузионная камера работает непрерывно.

Пузырьковая камера. В изобретенной Д. А. Глезером в 1952 г. пузырьковой камере пересыщенные пары заменены прозрачной перегретой жидкостью (т. е. жидкостью, находящейся под внешним давлением, меньшим давления ее насыщенных паров; йм. § 124 1-го тома). Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара — образуется трек. Пузырьковая камера, как и камера Вильсона, работает циклами. Запускается камера резким снижением (сбросом) давления, вследствие чего рабочая жидкость переходит в метастабильное перегретое состояние. В качестве рабочей жидкости, которая одновременно служит мишенью для пролетающих через нее частиц, применяются водород, ксенон, пропан и некоторые другие вещества. Рабочий объем камер достигает 30 м3.

Рис. 75.2.

Искровая камера. В 1957 г. Краншау и де-Биром был сконструирован прибор для регистрации траекторий заряженных частиц, названный искровой камерой. Прибор состоит из системы плоских параллельных друг другу металлических электродов (рис. 75.2). Электроды соединяются через один. Одна группа электродов заземляется, а на другую периодически подается кратковременный (длительностью высоковольтный импульс .

Если в момент подачи импульса через камеру пролетит ионизирующая частица, ее путь будет отмечен цепочкой искр, проскакивающих между электродами. Прибор запускается автоматически с помощью включенных по схеме совпадений дополнительных счетчиков, регистрирующих прохождение через рабочий объем камеры исследуемых частиц.

Более совершенной разновидностью искровой камеры является стримерная камера. В этой камере высокое напряжение снимается раньше, чем успевает развиться полностью искра.

Рис. 75.3.

Поэтому возникают лишь зародышевые искры, которые образуют отчетливый след.

Эмульсионная камера. Советские физики Л. В. Мысовский и А. П. Жданов впервые применили для регистрации микрочастиц фотопластинки. Заряженные частицы оказывают на фотографическую эмульсию такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы. Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц, летящих параллельно плоскости слоя. В эмульсионных камерах облучению подвергаются толстые пачки (весом до нескольких десятков килограммов и толщиной в несколько сотен миллиметров), составленные из отдельных слоев фотоэмульсии (без подложки). После облучения пачка разбирается на слои, каждый из которых проявляется и просматривается под микроскопом. Для того чтобы можно было проследить путь частицы при переходе из одного слоя в другой, перед разборкой пачки на все слои наносится с помощью рентгеновских лучей одинаковая координатная сетка. Получающиеся таким способом треки частиц показаны на рис. 75.3, на котором зафиксировано последовательное превращение -мезона в мюон и затем в позитрон.

<< Предыдущий параграф Следующий параграф >>
Оглавление