Главная > Физика > Теоретическая физика. Т. II. Теория поля
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 54. Интенсивность

Таким образом, в геометрической оптике световую волну можно рассматривать как пучок лучей. Лучи, однако, сами по себе определяют лишь направление распространения света в каждой точке; остается вопрос о распределении интенсивности света в пространстве.

Рис. 7

Выделим на какой-либо из волновых поверхностей рассматриваемого пучка бесконечно малый элемент. Из дифференциальной геометрии известно, что всякая поверхность имеет в каждой своей точке два, вообще говоря, различных главных радиуса кривизны.

Пусть (рис. 7) — элементы главных кругов кривизны, проведенные на данном элементе волновой поверхности. Тогда лучи, проходящие через точки а и с, пересекутся друг с другом в соответствующем центре кривизны а лучи, проходящие через b и d, пересекутся в другом центре кривизны .

При данных углах раствора лучей, исходящих из длины отрезков пропорциональны соответствующим радиусам кривизны (т. е. длинам и ); площадь элемента поверхности пропорциональна произведению длин , т. е. пропорциональна Другими словами, если рассматривать элемент волновой поверхности, ограниченный определенным рядом лучей, то при движении вдоль них площадь этого элемента будет меняться пропорционально .

С другой стороны, интенсивность, т. е. плотность потока энергии, обратно пропорциональна площади поверхности, через которую проходит данное количество световой энергии. Таким образом, мы приходим к выводу, что интенсивность

Эту формулу надо понимать следующим образом. На каждом данном луче (АВ на рис. 7) существуют определенные точки и , являющиеся центрами кривизны всех волновых поверхностей, пересекающих данный луч. Расстояния и от точки О пересечения волновой поверхности с лучом до точек являются радиусами кривизны волновой поверхности в точке О. Таким образом, формула (54,1) определяет интенсивность света в точке О на данном луче как функцию от расстояний до определенных точек на этом дуче. Подчеркнем, что эта формула непригодна для сравнения интенсивностей в разных точках одной и той же волновой поверхности.

Поскольку интенсивность определяется квадратом модуля поля, то для изменения самого поля вдоль луча мы можем написать:

где в фазовом множителе под R может поразумеваться как так и величины отличаются друг от друга только постоянным (для данного луча) множителем, поскольку разность , расстояние между обоими центрами кривизны, постоянна.

Если оба радиуса кривизны волновой поверхности совпадают, то (54,1) и (54,2) имеют вид

Это имеет место, в частности, всегда в тех случаях, когда свет испускается точечным источником (волновые поверхности являются тогда концентрическими сферами, a R — расстоянием до источника света).

Из (54,1) мы видим, что интенсивность обращается в бесконечность в точках т. е. в центрах кривизны волновых поверхностей. Применяя это ко всем лучам в пучке, находим, что интенсивность света в данном пучке обращается в бесконечность, вообще говоря, на двух поверхностях — геометрическом месте всех центров кривизны волновых поверхностей. Эти поверхности носят название каустик. В частном случае пучка лучей со сферическими волновыми поверхностями обе каустики сливаются в одну точку {фокус).

Отметим, что, согласно известным из дифференциальной геометрии свойствам геометрического места центров кривизны семейства поверхностей, лучи касаются каустик.

Надо иметь в виду, что (при выпуклых волновых поверхностях) центры кривизны волновых поверхностей могут оказаться лежащими не на самих лучах, а на их продолжениях за оптическую систему, от которой они исходят. В таких случаях говорят о мнимых каустиках (или мнимых фокусах). Интенсивность света при этом нигде не обращается в бесконечность.

Что касается обращения интенсивности в бесконечность, то в действительности, разумеется, интенсивность в точках каустики делается большой, но остается конечной (см. задачу к § 59). Формальное обращение в бесконечность означает, что приближение геометрической оптики становится во всяком случае неприменимым вблизи каустик. С этим же обстоятельством связано и то, что изменение фазы вдоль луча может определяться формулой (54,2) только на участках луча, не включающих в себя точек его касания с каустиками. Ниже (в § 59) будет показано, что в действительности при прохождении мимо каустики фаза поля уменьшается на . Это значит, что если на участке луча до его касания первой каустики поле пропорционально множителю — координата вдоль луча), то после прохождения мимо каустики поле будет пропорционально То же самое произойдет вблизи точки касания второй каустики, и за этой точкой поле будет пропорционально

<< Предыдущий параграф Следующий параграф >>
Оглавление