Главная > Физика > Теоретическая физика. Т. III. Квантовая механика (нерелятивистская теория).
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА XV. ДВИЖЕНИЕ В МАГНИТНОМ ПОЛЕ

§ 111. Уравнение Шредингера в магнитном поле

Частица со спином обладает также и определенным «собственным» магнитным моментом . Соответствующий ему квантовомеханический оператор пропорционален оператору спина s, т. е. может быть, записан в виде

где s — величина спина частицы, — характерная для частицы постоянная. Собственные значения проекции магнитного момента равны Отсюда видно, что коэффициент (который и называют обычно просто величиной магнитного момента) представляет собой наибольшее возможное значение достигаемое при проекции спина

Отношение дает отношение собственного магнитного момента частицы к ее собственному механическому моменту (когда оба направлены по оси ). Как известно, для обычного (орбитального) момента это отношение равно (см. II, § 44). Коэффициент же пропорциональности между собственным магнитным моментом и спином частицы оказывается иным. Для электрона он равен — т. е. вдвое больше обычного значения (такое значение получается теоретически из релятивистского волнового уравнения Дирака — см. IV, § 33). Собственный магнитный момент электрона (спин 1/2) равен, следовательно, где

(111,2)

Эту величину называют магнетоном Бора.

Магнитный момент тяжелых частиц принято измерять в ядерных магнетонах, определяемых как где — масса протона. Эксперимент дает для собственного магнитного момента протона значение 2,79 ядерных магнетонов, причем момент направлен по спину. Магнитный момент нейтрона направлен противоположно спину и равен 1,91 ядерного магнетона.

Обратим внимание на то, что величины и s, стоящие в обоих сторонах равенства (111,1), как и следовало, одинаковы по своему векторному характеру: обе являются аксиальными векторами.

Аналогичное же равенство для электрического двпольного момента противоречило бы симметрии по отношению к инверсии координат: при инверсии менялся бы относительный знак обеих сторон равенства.

В нерелятивистской квантовой механике магнитное поле может рассматриваться только в качестве внешнего поля. Магнитное взаимодействие частиц друг с другом является релятивистским эффектом, и его учет требует последовательной релятивистской теории.

В классической теории функция Гамильтона заряженной частицы в электромагнитном воле имеет вид

где — скалярный, А — векторный потенциал поля, — обобщенный импульс частицы (см. II, § 16). Если частица не обладает едином, то переход к квантовой механике производится обычным образом: обобщенный импульс надо заменить оператором и мы получим гамильтониан

Если же частица обладает спином, то такая операция недостаточна. Дело в том, что собственный магнитный момент частицы непосредственно взаимодействует с магнитным полем. В классической функции Гамильтона это взаимодействие вообще отсутствует, поскольку сам спин, будучи чисто квантовым эффектом, исчезает при переходе к классическому пределу. Правильное выражение для гамильтониана получится путем введения (в 111,3) дополнительного члена — соответствующего энергии магнитного момента , в поле Н. Таким образом, гамильтониан частицы, обладающей спином, имеет вид

При раскрытии квадрата надо иметь ввиду, оператор , вообще говоря, не коммутативен с вектором А, являющимся функцией координат. Поэтому надо писать

Согласно правилу коммутации (16,4) оператора импульса с любой функцией координат имеем

(111,6)

Таким образом, и А коммутативны, если , в частности, имеет место для однородного поля, если выбрать его векторный потенциал в виде

(111,7)

Уравнение с гамильтонианом (111,4) представляет собой обобщение уравнения Шредингера на случай наличия магнитного поля. Волновые функции, на которые действует гамильтониан в этом уравнении, — симметричные спиноры ранга

Волновые функции частины в электромагнитном поле обладают неоднозначностью, связанной с неоднозначностью потенциалов поля. Как известно (см. II, § 18), последние определены лишь с точностью до калибровочного преобразования

(111,8)

где — произвольная функция координат и времени. Такое преобразование не отражается на значениях напряженностей поля. Ясно поэтому, что оно не должно существенно изменять также и решений волнового уравнения; в частности, должен оставаться неизменным квадрат Действительно легко убедиться в том, что мы вернемся к исходному уравнению, если одновременно с заменой (111,8) в гамильтониане произвести также и замену волновой функции согласно

(111,9)

Эта неоднозначность волновой функции не сказывается ни на какой имеющей физический смысл величине (в определение которой не входят в явном виде потенциалы).

В классической механике обобщенный импульс частицы связан с ее скоростью соотношением Для того чтобы найти оператор v в квантовой механике, надо прокоммутировать вектор с гамильтонианом.

Простое вычисление приводит к результату

(111,10)

в точности аналогичному классическому. Для операторов компонент скорости имеют место правила коммутации

которые легко проверить непосредственным вычислением. Мы видим, что в магнитном поле операторы трех компонент скорости частицы (заряженной) оказываются некоммутативными. Это значит, что частица не может иметь одновременно определенных значений скорости по всем трем направлениям.

При движении в магнитном поле симметрия по отношению к обращению времени имеет место лишь при условии изменения знака поля Н (и векторного потенциала А). Это значит (см. § 18 и 60), что уравнение Шредингера должно сохранить свой вид при переходе к комплексно сопряженным величинам и изменении знака Н. Для всех членов в гамильтониане (111,4), за исключением члена — это непосредственно очевидно. Член же в уравнении Шредингера переходит при указанном преобразовании в и на первый взгляд нарушает требуемую инвариантность, поскольку оператор s не совпадает с .

Следует, однако, учесть, что волновая функция есть в действительности контрвариантный спинор который при комплексном сопряжении переходит в ковариантный (см. § 60). Контравариантным же является спинор Находя с помощью определений (57,4), (57,5) компоненты и выражая их через убеждаемся в том, что операция обращения времени приводит к уравнению Шредингера для компонент того же вида, который имело исходное уравнение для компонент

<< Предыдущий параграф Следующий параграф >>
Оглавление