Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 19.2. Прохождение медленно меняющихся сигналов в автоколебательных системахРассмотрим очень важный для практики случай, когда внешнее воздействие
где
Указанными свойствами почти всегда обладают «полезные» сигналы управления, проходящие через автоматическую автоколебательную систему (в том числе в переходных процессах). Условие медленного изменения любой функции времени можно выразить также и в частотной форме, а именно: медленно меняющейся считается такая функция, возможные частоты изменения которой во времени значительно ниже возможной частоты возникающего в системе периодического решения (автоколебаний). Сделанные предположения позволят величину
где В связи со сказанным здесь остается в силе разложение (19.5) — (19.7). Но подстановка его в заданное уравнение нелинейной автоматической системы (19.1) дает
При достаточно медленном изменении функции
соответственно для медленно меняющейся составляющей и для колебательной составляющей. При этом разделении уравнений, как и прежде, сохраняются существенно нелинейные свойства системы. Следовательно, здесь сохраняется целиком прежний (§ 19.1) первый метод решения задачи (второй здесь неприемлем), выраженный формулами (19.10) — (19.13), где в данном случае а медленно меняющейся. Поэтому прежний процесс решения заканчивается определением функции смещения (19.13). Подставив (19.13) в (19.66), получим дифференциальное уравнение для определения медленно меняющегося сигнала управления
Таким образом, получается, что для определения медленно меняющихся процессов функцию смещения
следует подставить в уравнение автоматической системы (19.1) вместо заданной нелинейности Следовательно, функция смещения При любых нелинейностях, в том числе и скачкообразных, функция смещения
Рис. 19.6. Так, в примере § 19.1 согласно (19.40) функция смещения будет иметь вид рис. 19.6, а, т. е. для медленно меняющегося сигнала в данной релейной системе нелинейная характеристика будет в определенных пределах иметь плавный вид (рис. 19.6, а) вместо скачкообразного (рис. 19.6, б) — за счет сглаживающего влияния автоколебательных вибраций. Далее, например, для нелинейностей, обусловленных зоной нечувствительности (рис. 19.7, а), а также зазором (рис. 19.7, в) и петлей, сигналы Однако в других случаях эффект вибрационного сглаживания нелинейности может оказаться и отрицательным. Возьмем, например, нелинейную характеристику с зоной насыщения (ограниченно-линейную), показанную на рис. 19.8. В этом случае за счет того, что верхушки синусоиды с одной стороны срезаются, постоянная составляющая Во многих случаях вычисление а и со будет необходимо только с точки зрения проверки выполнения условий вибрационного сглаживания нелинейности и допустимости таких вибраций в данной конкретной автоматической системе. Основными же для качества работы автоматической системы при этом будут являться медленно меняющиеся процессы, определяемые уравнением (19.68). С точки зрения упрощения их определения весьма важными являются следующие два обстоятельства. Во-первых, вид функции смещения
Рис. 19.7. Вид Во-вторых, какова бы ни была заданная нелинейность
Рис. 19.8. Поэтому, в отличие от первоначально заданной нелинейности, ее легко можно линеаризовать обычным способом (по касательной или по секущей в начале координат или в другом начале отсчета). Имея ввиду это свойство, часто вместо термина «вибрационное сглаживание» употребляют термин «вибрационная линеаризация» (будем придерживаться первого из них). Итак, в определенном диапазоне можно считать
где
Графически Величина коэффициента Например, для системы, описываемой уравнениями (19.20) — (19.23), согласно (19.53) и (19.50) имеем
Поэтому для расчета медленно протекающих процессов в данной системе на основании (19.20) — (19.22) и (19.70) получаем линейные уравнения;
или единое линейное уравнение (19.24), в котором надо заменить х на Определение коэффициента усиления
В тех случаях, когда рассматриваются нечетно-симметричные нелинейности
так как производная под знаком интеграла будет четной функцией. Следовательно, для нечетно-симметричных нелинейностей
непосредственно из выражения (19.7), не определяя функции смещения Это упрощение не относится к несимметричным нелинейностям, а также к тем случаям, когда Итак, с подстановкой (19.70) уравнение (19.68) для определения медленно протекающих процессов становится обыкновенным линейным уравнением
и, как таковое, легко решается. Как видим, введенный здесь принцип разделения уравнений для колебательных и для медленно меняющихся составляющих, при котором сохраняются существенно нелинейные свойства системы, приводит к весьма важным для практических расчетов результатам. Существенным выводом является то, что медленно меняющиеся сигналы проходят через нелинейность с другим коэффициентом усиления Особенно важно использовать свойство вибрационного сглаживания нелинейностей с последующей их обычной линеаризацией при расчете сложных автоматических систем. Если, например, система автоматического управления полетом самолета работает по схеме, изображенной на рис. 19.9, то часть системы, обведенную пунктиром (релейный усилитель, привод и дополнительная обратная связь), как отдельную следящую систему, можно рассчитывать изложенным выше методом с учетом автоколебательных вибраций. Частоту последних путем соответствующего выбора параметров этой части системы или введением корректирующих устройств можно сделать достаточно большой с тем, чтобы амплитуда автоколебаний переменной
Рис. 19.9. Если же указанную амплитуду Тогда расчет автоматической системы будет выглядеть следующим образом. Автоколебания определяем только в обведенной пунктиром внутренней части (рис. 19.9), как в отдельной самостоятельной системе, считая После такого расчета внутренней части системы производим обычную линеаризацию функции смещения Изложенный принцип позволяет, во-первых, вести расчет автоколебаний по более простым уравнениям (так как выделяется только внутренняя часть системы) и, во-вторых, значительно упрощает расчет всей системы в целом, сводя его к исследованию обыкновенных линейных уравнений (но с коэффициентом Известно, что и само движение самолета, например по тангажу, можно разделить на два, одно более быстрое — движение около центра тяжести (угловое движение) и другое более медленное — движение центра тяжести (движение по траектории). Оба они являются медленными по сравнению с автоколебаниями внутреннего контура системы управления. Однако их в свою очередь тоже можно рассматривать отдельно. Следовательно, в этом случае, кроме обычно применяемого пространственного разбиения движения самолета по каналам (тангажа, курса, крена), расчет системы по каждому каналу (например, тангажа) разбивается еще на три этапа по степени медленности движения во времени. Аналогичное разделение расчета по крайней мере на два этапа по степени медленности во времени бывает целесообразным и для многих других нелинейных автоматических систем регулирования, слежения, стабилизации и т. п. В сложных системах такие приемы, существенно упрощающие все исследование, оказываются единственными, которые могут сделать расчет системы практически осуществимым. Важно иметь в виду, что при этом принципе разделения движений сохраняется существенная нелинейная взаимосвязь между ними.
|
1 |
Оглавление
|