Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 36. Геометрическая оптикаГеометрическая оптика использует представление о световых лучах, распространяющихся независимо друг от друга, прямолинейных в однородной среде, отражающихся и преломляющихся на границах сред с разными оптическими свойствами. Вдоль лучей происходит перенос энергии световых колебаний. Показатель преломления среды. Оптические свойства прозрачной среды характеризуются показателем преломления
где с — скорость света в вакууме. Показатель преломления воздуха близок к единице (пвозд Значение показателя преломления, вообще говоря, зависит от длины волны Я (или от частоты Показатель преломления связан с диэлектрической проницаемостью среды Законы геометрической оптики. Поведение световых лучей подчиняется основным законам геометрической оптики. 1. В однородной среде световые лучи прямолинейны (закон прямолинейного распространения света). 2. На границе двух сред (или на границе среды с вакуумом) возникает отраженный луч, лежащий в плоскости, образуемой падающим лучом и нормалью к границе, т. е. в плоскости падения, причем угол отражения
(закон отражения, света). 3. Преломленный луч лежит в плоскости падения (при падении света на границу изотропной среды) и образует с нормалью к границе угол
или
(закон преломления света или закон Снеллиуса). При переходе света в оптически более плотную среду
Рис. 224. Отражение и преломление спета на плоской границе двух сред При падении света из вакуума на границу среды с показателем преломления
Для воздуха показатель преломления близок к единице При переходе света в оптически менее плотную среду
Если угол падения
Рис. 225. Предельный угол полного отражения Принцип Гюйгенса и законы геометрической оптики. Законы геометрической оптики были установлены задолго до выяснения природы света. Эти законы могут быть выведены из волновой теории на основе принципа Гюйгенса. Их применимость ограничена явлениями дифракции. Остановимся подробнее на переходе от волновых представлений о распространении света к представлениям геометрической оптики. С помощью принципа Гюйгенса по заданной волновой поверхности падающей волны можно построить волновые поверхности преломленной и отраженной волн. При этом следует учесть, что световые лучи перпендикулярны волновым поверхностям. Рассмотрим плоскую световую волну, падающую из среды 1 (с показателем преломления
Рис. 226. Построение Гюйгенса для отражения и преломления света В то же время Аналогично из этого построения Гюйгенса можно получить и закон преломления. В среде 2 вторичные волны распространяются со скоростью
которое, очевидно, совпадает с законом преломления (3), так как угол Отражение и преломление на искривленной поверхности. Плоская волна характеризуется тем свойством, что ее волновые поверхности представляют собой неограниченные плоскости, а направление ее распространения и амплитуда везде одинаковы. Часто электромагнитные волны, не являющиеся плоскими, можно приближенно рассматривать как плоские на небольшом участке пространства. Для этого необходимо, чтобы амплитуда и направление распространения волны почти не менялись на протяжении расстояний порядка длины волны. Тогда также можно ввести понятие лучей, т. е. линий, касательная к которым в каждой точке совпадает с направлением распространения волны. Если при этом граница раздела двух сред, например поверхность линзы, может считаться приблизительно плоской на расстояниях порядка длины волны, то поведение лучей света на такой границе будет описываться теми же законами отражения и преломления. Изучение законов распространения световых волн в этом случае составляет предмет геометрической оптики, поскольку в этом приближении оптические законы можно сформулировать на языке геометрии. Многие оптические явления, такие, как, например, прохождение света через оптические системы, формирующие изображение, можно рассматривать исходя из представления о световых лучах, совершенно отвлекаясь от волновой природы света. Поэтому представления геометрической оптики справедливы лишь в той степени, в какой можно пренебречь явлениями дифракции световых волн. Дифракция сказывается тем слабее, чем меньше длина волны. Это значит, что геометрическая оптика соответствует предельному случаю малых длин волн: Физическую модель пучка световых лучей можно получить, если пропустить свет от источника пренебрежимо малого размера через небольшое отверстие в непрозрачном экране. Выходящий из отверстия свет заполняет некоторую область, и если длина волны пренебрежимо мала по сравнению с размерами отверстия, то на небольшом расстоянии от него можно говорить о пучке световых лучей с резкой границей. Интенсивность отраженного и преломленного света. Законы отражения и преломления позволяют определить только направление соответствующих световых лучей, но ничего не говорят об их интенсивности. Между тем опыт показывает, что соотношение интенсивностей отраженного и преломленного лучей, на которые расщепляется исходный луч на границе раздела, сильно зависит от угла падения. Например, при нормальном падении света на поверхность стекла отражается около 4% энергии падающего светового пучка, а при падении на поверхность воды — только 2 %. Но при скользящем падении поверхности стекла и воды отражают почти все падающее излучение. Благодаря этому мы можем любоваться зеркальными отражениями берегов в спокойной прозрачной воде горных озер.
Рис. 227. У естественного спета колебания сектора Е происходят по всевозможных направлениях в плоскости, перпендикулярной лучу Естественный свет. Световая волна, как и любая электромагнитная волна, поперечна: вектор Е лежит в плоскости, перпендикулярной направлению распространения. Испускаемый обычными источниками (например, раскаленными телами) свет неполяризован. Это значит, что в световом луче колебания вектора Е происходят во всевозможных направлениях в плоскости, перпендикулярной направлению луча (рис. 227). Такой неполяризованный свет называется естественным. Его можно представить как некогерентную смесь двух световых волн одинаковой интенсивности, линейно поляризованных в двух взаимно перпендикулярных направлениях. Эти направления можно выбрать произвольно. Поляризация света при отражении. При изучении отражения неполяризованного света от границы раздела сред удобно выбрать одно из двух независимых направлений вектора Е в плоскости падения, а второе — перпендикулярно ей. Условия отражения этих двух волн оказываются различными: волна, у которой вектор Е перпендикулярен плоскости падения (т. е. параллелен границе раздела) при всех углах падения (кроме 0 и 90°), отражается сильнее. Поэтому отраженный свет оказывается частично поляризованным, а при отражении под некоторым определенным углом (для стекла около 56°) — полностью поляризованным. Этим обстоятельством пользуются для устранения бликов, например при фотографировании пейзажа с водной поверхностью. Подбирая должным образом ориентацию поляризационного светофильтра, пропускающего световые колебания только определенной поляризации, можно практически полностью устранить блики на фотографии. Принцип Ферма. Основные законы геометрической оптики — закон прямолинейного распространения света в однородной среде, законы отражения и преломления света на границе раздела двух сред — могут быть получены с помощью принципа Ферма. Согласно этому принципу действительный путь распространения монохроматического луча света есть путь, для прохождения которого свету требуется экстремальное (как правило, минимальное) время по сравнению с любым другим близким к нему мыслимым путем между теми же точками.
Рис. 228. К выводу закона отражения света из принципа Ферма Возьмем для примера закон отражения света. Сразу видно, что он непосредственно следует из принципа Ферма. Пусть луч света, вышедшего из точки А, отражается от зеркала в некоторой точке С и приходит в заданную точку В (рис. 228). Согласно принципу Ферма, проходимый светом путь Пересечение этого отрезка с поверхностью зеркала и дает положение точки С. Действительно, легко видеть, что
Рис. 229. Мнимое изображение точки А в плоском зеркале Изображение в плоском зеркале. Точка А, расположенная симметрично точке А относительно поверхности плоского зеркала, представляет собой изображение точки А в этом зеркале. В самом деле, узкий пучок лучей, выходящих из А, отражающихся в зеркале и попадающих в глаз наблюдателя (рис. 229), будет казаться выходящим из точки А. Создаваемое плоским зеркалом изображение называется мнимым, так как в точке А пересекаются не сами отраженные лучи, а их продолжения назад. Очевидно, что изображение протяженного предмета в плоском зеркале будет равным по размерам самому предмету. • Что такое световые лучи? Как это понятие соотносится с понятием волновой поверхности? Какое отношение имеют лучи к направлению распространения световых колебаний? • В каких условиях можно использовать представление о световых лучах? • Что такое показатель преломления среды? Как он связан со скоростью распространения света? • Сформулируйте основные законы геометрической оптики. Что такое плоскость падения? Объясните на основе соображений симметрии, почему луч как при отражении, так и при преломлении не выходит из этой плоскости. • При каких условиях отражение света на границе раздела будет полным? Что такое предельный угол полного отражения? • Поясните, как можно получить законы прямолинейного распространения, отражения и преломления на основе принципа Гюйгенса. • Почему законы отражения и преломления света, сформулированные для плоской границы раздела, можно применять и в случае искривленных поверхностей (линзы, капли воды и др.)? • Приведите примеры наблюдавшихся вами явлений, свидетельствующих о зависимости интенсивности отраженного света от угла падения. • Почему при отражении естественного света получается частично поляризованный свет? • Сформулируйте принцип Ферма и покажите, что из него следует закон отражения света. • Докажите, что изображение предмета в плоском зеркале равно по размерам самому предмету. Принцип Ферма и формула линзы. Скорость света в среде с показателем преломления Получим с помощью принципа Ферма формулу тонкой линзы, не прибегая к закону преломления. Для определенности будем рассматривать двояковыпуклую линзу со сферическими преломляющими поверхностями, радиусы кривизны которых равны Хорошо известно, что с помощью собирающей линзы можно получить действительное изображение точки. Пусть Из принципа Ферма следует, что оптические длины всех лучей, выходящих из источника и собирающихся в точке, являющейся его изображением, одинаковы. Рассмотрим два из этих лучей: один, идущий вдоль оптической оси, второй — через край линзы (рис. 230а).
Рис. 230. К вьшоду формулы тонкой линзы Несмотря на то, что второй луч проходит большее расстояние, его путь в стекле короче, чем у первого, так что время распространения света
Выразим
Теперь воспользуемся приближенной формулой
Аналогично для
Подставляем выражения (8) и (9) в основное соотношение (7) и приводим подобные члены:
В этой формуле в случае тонкой линзы можно пренебречь величинами С той же точностью, что и в формулах (8) и (9),
Теперь остается только подставить эти выражения в левую часть формулы (10) и сократить обе части равенства на
Это и есть искомая формула тонкой линзы. Вводя обозначение
ее можно переписать в виде
Фокусное расстояние линзы. Из формулы (12) нетрудно понять, что Аберрации. Полученное свойство фокусировки параллельного пучка монохроматических лучей является, как видно из проделанного вывода, приближенным и справедливо лишь для узкого пучка, т. е. для лучей, не слишком сильно отстоящих от оптической оси. Для широких пучков лучей имеет место сферическая аберрация, проявляющаяся в том, что далекие от оптической оси лучи пересекают ее не в фокусе (рис. 231). В результате изображение бесконечно удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается несколько размытым. Кроме сферической аберрации, линза как оптический прибор, формирующий изображение, обладает рядом других недостатков. Например, даже узкий параллельный пучок монохроматических лучей, образующий некоторый угол с оптической осью линзы, после преломления не собирается в одну точку. При использовании немонохроматического света у линзы проявляется еще и хроматическая аберрация, связанная с тем, что показатель преломления При конструировании оптических приборов удается в большей или меньшей степени устранить эти недостатки путем применения специально рассчитанных сложных многолинзовых систем. Однако одновременно устранить все недостатки невозможно. Поэтому приходится идти на компромисс и, рассчитывая оптические приборы, предназначенные для определенной цели, добиваться устранения одних недостатков и мириться с присутствием других. Например, объективы, предназначенные для наблюдения объектов малой яркости, должны пропускать возможно больше света, что вынуждает мириться с некоторыми аберрациями, неизбежными при использовании широких пучков света.
Рис. 231. Сферическая аберрация линзы Для объективов телескопов, где изучаемыми объектами являются звезды — точечные источники, расположенные вблизи оптической оси прибора, особенно важно устранить сферическую и хроматическую аберрацию для широких пучков, параллельных оптической оси. Устранить хроматическую аберрацию проще всего путем использования в оптической системе отражения вместо преломления. Так как лучи всех длин волн отражаются одинаково, то телескоп-рефлектор, в отличие от рефрактора, полностью лишен хроматической аберрации. Если при этом еще надлежащим образом выбрать форму поверхности отражающего зеркала, то можно полностью избавиться и от сферической аберрации для пучков, параллельных оптической оси. Для получения точечного осевого изображения зеркало должно быть параболическим. Покажем это. Пусть плоская волна, т. е. пучок лучей, параллельных оси у, падает на зеркальную поверхность, обладающую тем свойством, что после отражения все лучи собираются в одной точке этих лучей от произвольной волновой поверхности
Из рис. 232 видно, что
Возводя обе части в квадрат и приводя подобные члены, найдем
Это уравнение параболы.
Рис. 232. Все параллельные лучи после отражения от параболического зеркала собираются в точке Параболические зеркала используются во всех крупнейших телескопах. В этих телескопах устранены сферическая и хроматическая аберрации; однако параллельные пучки, идущие даже под небольшими углами к оптической оси, после отражения не пересекаются в одной точке и дают сильно искаженные внеосевые изображения. Поэтому пригодное для работы поле зрения оказывается очень небольшим, порядка нескольких десятков угловых минут, • Поясните, почему применительно к фокусирующей оптической системе принцип Ферма формулируется как условие равенства оптических длин всех лучей от точки предмета до ее изображения. • Выведите с помощью принципа Ферма закон преломления света на границе раздела двух сред. • Сформулируйте приближения, при выполнении которых справедлива формула тонкой линзы. • В чем проявляются сферическая и хроматическая аберрации линзы? • Какие преимущества и какие недостатки имеет параболическое зеркало по сравнению со сферическим? • Покажите, что эллиптическое зеркало отражает все лучи, вышедшие из одного фокуса эллипсоида, в другой фокус.
|
1 |
Оглавление
|