Главная > Физика > Феймановские лекции по гравитации
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Лекция 12

12.1. Проблемы космологии

В предыдущей лекции мы кратко обрисовали одну из задач классической теории гравитации, состоящую в описании сферически симметричного распределения массы, что представляет собой идеализированную модель звезды. Вторая задача, над которой мы бьемся, используя классическую теорию гравитации, - это космология, или "наука о вселенной". Все остальные задачи в теории гравитации мы будем исследовать, используя квантовую теорию; для того, чтобы получить классические следствия относительно макроскопических объектов, мы будем брать классические пределы для квантовых решений.

Очень трудно установить, что есть космология. Вообще говоря, она имеет дело со всем, что нам может быть известно о том, что происходит, если характерный масштаб является гигантским, то есть достаточно большим для того, чтобы даже галактики могли бы рассматриваться как объекты, инфинитезимальные по своему размеру. Космология может иметь дело также с вопросом о том, из чего образовалось видимое вещество, исходя из заданной начальной гипотезы, такой как "в самом начале все вещество состояло из водорода".

Один из аспектов космологии имеет дело с настоящей географией вещества; важный вопрос состоит в исследовании того, где находится вещество и что там происходит. Соответствующие наблюдения помогают нам ответить на вопрос о том, сколько галактик в направлении на восток или на запад и в каком направлении они движутся. Мы убеждены, что движение галактик определяется исключительно гравитацией, так что если однажды мы увидели или измерили распределение вещества и его скоростей, то простая физическая задача состоит в том, чтобы предсказать, что будет происходить потом. Космологические задачи другого рода возникают, когда мы переходим к таким гигантским масштабам, что подробная структура должна исчезнуть. Задача о том, что происходит затем, может быть в принципе решена путем задания каких бы то ни было любых начальных условий. Когда все детальное движение усредняется, мы можем задать вопрос, является ли вселенная статической или эволюционирующей, устойчивой или неустойчивой, конечной или бесконечной. Одно из интригующих предложений состоит в том, что вселенная имеет структуру, аналогичную той, которую имеет сферическая поверхность. Если мы движемся в любом направлении по такой поверхности, мы никогда не встретим границы или конца, несмотря на то, что поверхность ограничена и конечна. Могло бы быть так, что наше трехмерное пространство есть такой же объект, трехмерная поверхность четырехмерной сферы.

Такое устройство вселенной и распределение галактик, которое мы могли бы тогда увидеть, было бы чем-то аналогичным распределению пятен на шаре.

Оказывается, что одна теория гравитации (без привлечения других теорий) не дает ответ, который ограничивает возможные распределения по сфере, и не позволяет ей опровергнуть или доказать, что вселенная ограничена или бесконечна как гиперболический параболоид. Таким образом, задачи космологии всегда завязаны с некоторыми фундаментальными предположениями. Наиболее надежный способ проверить справедливость таких предположений состоит в том, чтобы вывести некоторые следствия и сравнить результаты с наблюдениями.

Наблюдения по исследованию географии вещества, которое расположено очень далеко от нас, являются весьма трудными и довольно неопределенными даже при использовании современных методов исследования. Следует также помнить, что какая-то область неба блокирована для исследований влиянием нашей собственной Галактики, которая содержит так много пыли, что не позволяет производить наблюдения в направлениях вдоль галактической плоскости. Несмотря на эти трудности и возможные ограничения, в настоящее время имеются свидетельства того, чтобы предположить, что вселенная повсюду однородна с галактиками, распределенными здесь и там, где-то больше, где-то меньше, но так, что любая заданная большая область очень сильно похожа на любую другую большую область. Для того, чтобы получить двумерный аналог, мы скажем, что это выглядит так, как если бы машина проехала по луже и разбрызгала грязные пятна случайным образом по стене и мы сидим на одном из этих грязных пятен и смотрим на все другие пятна.

Распределение скоростей оказывается весьма интересным, если мы сравниваем скорости галактик с их видимым расстоянием до нас. Давайте пропустим трудности, связанные с определением расстояний, несмотря на то, что эта трудности являются весьма существенными. Астрономы получили некоторые расстояния всеми правдами и неправдами, например, используя предположения о статистическом распределении яркости, и готовы ссылаться на них с некоторой неопределенностью, которая все время становится меньше. В то же время у нас есть измерения скоростей галактик по допплеровскому сдвигу частот спектра. Эти результаты оказываются согласованными в том смысле, что они показывают, что в оптических линиях наблюдаемого объекта имеется сдвиг в направлении меньших (более красных) частот спектральных линий, причем этот сдвиг пропорционален расстоянию, на которое удален от нас этот объект.

В лекции 1 мы обсудили простую модель для того, чтобы интерпретировать эти факты. Если все массы во вселенной есть осколки от взрыва, который произошел время Т назад, и мы предполагаем, что гравитационные силы - слабы, тогда мы ожидаем, что осколок, который двигался со скоростью V относительно центра, сейчас должен находиться на расстоянии R = VT от центра.

Это соотношение выполняется вне зависимости от того, какое может быть значение скорости V, так что все осколки мы ожидаем время это есть универсальная постоянная. Наблюдения согласуются с этой постоянной Т и принимают значения в интервале лет. Неопределенности в оценке связаны не с измерениями скорости, а с измерениями расстояний. Наиболее далекие объекты, которые мы наблюдаем, удаляются от нас со скоростью . Такое значение красного смешения есть одно из ключевых наблюдений, которое говорит нам кое-что о вселенной.

Другие наблюдения касаются распределения галактик. Хотя все видимые части неба оказываются замечательным образом похожими, галактики не распределены случайным образом, а сосредоточены в сгустках или скоплениях. Мы могли бы сказать, что галактики случайным образом расположены, если бы мы обнаружили, что для различных областей вселенной, имеющих заданные размеры, есть постоянная величина N с разбросом . В среднем расстояния между галактиками равны их диаметрам, умноженным примерно на десять. Наша Галактика имеет диаметр примерно световых лет, так что среднее межгалактическое расстояние равно примерно световых лет. Число галактик, распределенных внутри кубов с ребрами большими, чем световых лет, не равно N ± VN (для любого расположения кубов с заданным размером). Найдено, что галактики сосредоточены преимущественно в скоплениях примерно по 50 галактик в скоплении, это есть типичное число галактик в скоплении. Кроме того, найдены скопления скоплений. Тем не менее, говорят, что не обнаружены скопления скоплений скоплений галактик - это означает, что если мы идем к масштабам длины, которые велики по сравнению с масштабом световых лет, вселенная кажется имеющей почти "случайное" распределение галактик.

Так как предполагается, что скопление галактик и скопление скоплений обусловлено гравитационным взаимодействием между ними, предполагается, что отсутствие скоплений с радиусом большим, чем несколько единиц, умноженных на световых лет, есть свидетельство "обрезания" гравитационной силы на масштабе, порядка этой величины. Мы не будем принимать такую точку зрения потому, что мы не хотим модифицировать нашу теорию; если только не обнаружатся эффекты, в действительности опровергающие эту теорию; отсутствие скоплений скоплений скоплений не кажутся мне тем, что было бы противоречием нашей теории. Мы возьмем эту характерную величину в качестве меры масштаба длины, по которому мы должны усреднить плотность вещества, если мы хотим рассматривать вселенную, как являющуюся в некотором смысле однородной.

Имеются ли какие-либо вариации в однородном распределении плотности в областях, находящихся на различном расстоянии от нас?

С помощью наблюдений делается попытка подсчитать количество галактик в оболочках, имеющих внутренний радиус R и внешний радиус . Полученные результаты наводят на мысль о том, что здесь могут быть небольшие вариации плотности в зависимости от расстояния, что делает вселенную более плотной в отдаленных областях. Тем не менее, неопределенности подобного распределения плотности велики сравнительно с относительными вариациями от постоянного значения плотности; теория вселенной, предсказывающая или предполагающая постоянное распределение плотности, не оказалась бы в рассогласовании с имеющимися в настоящее время оценками.

<< Предыдущий параграф Следующий параграф >>
Оглавление