Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
18.9. Передача информации с искажениями. Пропускная способность канала с помехамиВ предыдущем
Совершенно очевидно, что наличие помех приводит к потере информации. Чтобы в условиях наличия помех получить на приемнике требуемый объем информации, необходимо принимать специальные меры. Одной из таких мер является введение так называемой «избыточности» в передаваемые сообщения; при этом источник информации выдает заведомо больше символов, чем это было бы нужно при отсутствии помех. Одна из форм введения избыточности - простое повторение сообщения. Таким приемом пользуются, например, при плохой слышимости по телефону, повторяя каждое сообщение дважды. Другой общеизвестный способ повышения надежности передачи состоит в передаче слова «по буквам» - когда вместо каждой буквы передается хорошо знакомое слово (имя), начинающееся с этой буквы. Заметим, что все живые языки естественно обладают некоторой избыточностью. Эта избыточность часто помогает восстановить правильный текст «по смыслу» сообщения. Вот почему встречающиеся вообще нередко искажения отдельных букв телеграмм довольно редко приводят к действительной потере информации: обычно удается исправить искаженное слово, пользуясь одними только свойствами языка. Этого не было бы при отсутствии избыточности. Мерой избыточности языка служит величина
где
Расчеты, проведенные на материале наиболее распространенных европейских языков, показывают, что их избыточность достигает 50% и более (т. е., грубо говоря, 50% передаваемых символов являются лишними и могли бы не передаваться, если бы не опасность искажений). Однако для безошибочной передачи сведений естественная избыточность языка может оказаться как чрезмерной, так и недостаточной: все зависит от того, как велика опасность искажений («уровень помех») в канале связи. С помощью методов теории информации можно для каждого уровня помех найти нужную степень избыточности источника информации. Те же методы помогают разрабатывать специальные помехоустойчивые коды (в частности, так называемые «самокорректирующиеся» коды). Для решения этих задач нужно уметь учитывать потерю информации в канале, связанную с наличием помех. Рассмотрим сложную систему,
состоящую из источника информации
Рис. 18.9.1. Источник
информации представляет собой физическую систему
с вероятностями
Будем рассматривать эти состояния
как элементарные символы, которые может передавать источник
Если
бы передача сообщений не сопровождалась ошибками, то количество информации,
содержащееся в системе
Естественно рассматривать
условную энтропию Умея определять потерю информации в канале, приходящуюся на один элементарный символ, переданный источником информации, можно определить пропускную способность канала с помехами, т. е. максимальное количество информации, которое способен передать канал в единицу времени. Предположим, что канал может
передавать в единицу времени
так
как максимальное количество информации, которое может содержать один символ,
равно Теперь рассмотрим канал с помехами. Его пропускная способность определится как
где
Определение этой максимальной информации в общем случае - дело довольно сложное, так как она зависит от того, как и с какими вероятностями искажаются символы; происходит ли их перепутывание, или же простое выпадение некоторых символов; происходят ли искажения символов независимо друг от друга и т. д. Однако для простейших случаев пропускную способность канала удается сравнительно легко рассчитать. Рассмотрим, например, такую
задачу. Канал связи Определим сначала максимальную
информацию на один символ, которую может передавать канал. Пусть источник
производит символы 0 и 1 с вероятностями Тогда энтропия источника будет
Определим
информацию
Чтобы найти полную условную
энтропию
вторая - вероятности того, что сигнал перепутан:
Условная
энтропия
Найдем
теперь условную энтропию системы
откуда
Таким образом,
Полная
условная энтропия
Мы получили следующий вывод: условная
энтропия Вычислим полную информацию, передаваемую одним символом:
где
Следовательно, в нашем случае
и пропускная способность канала связи будет равна
Заметим, что Пример. 1. Определить пропускную
способность канала связи, способного передавать 100 символов 0 или 1 в единицу
времени, причем каждый из символов искажается (заменяется противоположным) с
вероятностью Решение. По таблице 7 приложения находим
На один символ теряется информация 0,0808 (дв. ед). Пропускная способность канала равна
двоичные единицы в единицу времени. С помощью аналогичных расчетов может быть определена пропускная способность канала и в более сложных случаях: когда число элементарных символов более двух и когда искажения отдельных символов зависимы. Зная пропускную способность канала, можно определить верхний предел скорости передачи информации по каналу с помехами. Сформулируем (без доказательства) относящуюся к этому случаю вторую теорему Шеннона.
2-я теорема Шеннона
Пусть имеется источник информации
то при любом кодировании передача сообщений без задержек и искажений невозможна. Если же
то всегда можно достаточно длинное сообщение закодировать так, чтобы оно было передано без задержек и искажений с вероятностью, сколь угодно близкой к единице. Пример 2. Имеются источник
информации с энтропией в единицу времени Решение. Определяем потерю информации на один символ:
Максимальное количество информации, передаваемое по одному каналу в единицу времени:
Максимальное количество информации, которое может быть передано по двум каналам в единицу времени:
чего недостаточно для обеспечения передачи информации от источника.
|
1 |
Оглавление
|