Главная > Физика > Теоретическая физика, Т. I. Механика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. Принцип наименьшего действия

Наиболее общая формулировка закона движения механических систем дается так называемым принципом наименьшего действия (или принципом Гамильтона). Согласно этому принципу каждая механическая система характеризуется определенной функцией

или, в краткой записи, причем движение системы удовлетворяет следующему условию.

Пусть в моменты времени система занимает определенные положения, характеризуемые двумя наборами значений координат (1) и Тогда между этими положениями система движется таким образом, чтобы интеграл

имел наименьшее возможное значение. Функция L называется функцией Лагранжа данной системы, а интеграл (2.1) — действием.

Тот факт, что функция Лагранжа содержит только q и q, но не более высокие производные является выражением указанного выше утверждения, что механическое состояние полностью определяется заданием координат и скоростей.

Перейдем к выводу дифференциальных уравнений, решающих задачу об определении минимума интеграла (2,1). Для упрощения записи формул предположим сначала, что система обладает всего одной степенью свободы, так что должна быть определена всего одна функция

Пусть есть как раз та функция, для которой S имеет минимум. Это значит, что S возрастает при замене на любую функцию вида

где — функция, малая во всем интервале времени от до (ее называют вариацией функции поскольку при все сравниваемые функции (2,2) должны принимать одни и те же значения то должно быть:

Изменение 5 при замене q на дается разностью

Разложение этой разности по степеням (в подынтегральном выражении) начинается с членов первого порядка. Необходимым условием минимальности S) является обращение в нуль совокупности этих членов; ее называют первой вариацией (или обычно просто вариацией) интеграла. Таким образом, принцип наименьшего действия можно записать в виде

или, произведя варьирование:

Замечая, что проинтегрируем второй член по частям и получим:

Но в силу условий (2,3) первый член в этом выражении исчезает. Остается интеграл, который должен быть равен нулю при произвольных значениях . Это возможно только в том случае, если подынтегральное выражение тождественно обращается в нуль. Таким образом, мы получаем уравнение

При наличии нескольких степеней свободы в принципе наименьшего действия должны независимо варьироваться s различных функций Очевидно, что мы получим тогда s уравнений вида

Это — искомые дифференциальные уравнения; они называются в механике уравнениями Лагранжа. Если функция Лагранжа данной механической системы известна, то уравнения (2,6) устанавливают связь между ускорениями, скоростями и координатами, т. е. представляют собой уравнения движения системы.

С математической точки зрения уравнения (2,6) составляют систему s уравнений второго порядка для s неизвестных функций . Общее решение такой системы содержит произвольных постоянных. Для их определения и тем самым полного определения движения механической системы необходимо знание начальных условий, характеризующих состояние системы в некоторый заданный момент времени, например знание начальных значений всех координат и скоростей.

Пусть механическая система состоит из двух частей А и В, каждая из которых, будучи замкнутой, имела бы в качестве функции Лагранжа соответственно функции ? Тогда в пределе, при разведении частей настолько далеко, чтобы взаимодействием между ними можно было пренебречь, лагранжева функция всей системы стремится к пределу

Это свойство аддитивности функции Лагранжа выражает собой тот факт, что уравнения движения каждой из невзаимодействующих частей не могут содержать величины, относящиеся к другим частям системы.

Очевидно, что умножение функции Лагранжа механической системы на произвольную постоянную само по себе не отражается на уравнениях движения.

Отсюда, казалось бы, могла вытекать существенная неопределенность: функции Лагранжа различных изолированных механических систем могли бы умножаться на любые различные постоянные. Свойство аддитивности устраняет эту неопределенность, — оно допускает лишь одновременное умножение лагранжевых функций всех систем на одинаковую постоянную, что сводится просто к естественному произволу в выборе единиц измерения этой физической вели чины; мы вернемся еще к этому вопросу в § 4.

Необходимо сделать еще следующее общее замечание. Рассмотрим две функции отличающиеся друг от друга на полную производную по времени от какой-либо функции координат и времени

Вычисленные с помощью этих двух функций интегралы (2,1) связаны соотношением

т. e. отличаются друг от друга дополнительным членом, исчезающим при варьировании действия, так что условие совпадает с условием и вид уравнений движения остается неизменным.

Таким образом, функция Лагранжа определена лишь с точностью до прибавления к ней полной производной от любой функции координат и времени.

<< Предыдущий параграф Следующий параграф >>
Оглавление