Главная > Искусство схемотехники, Т.3
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

15.07. Детекторы элементарных частиц

В ядерной физике и физике элементарных частиц, а также в многочисленных областях науки, использующих в своей практике радиоактивные частицы (медицина, судебная экспертиза, промышленный контроль и т. п.), существенное место отводится вопросам обнаружения, идентификации, спектрального анализа заряженных частиц и фотонов высоких энергий (рентгеновских лучей и гамма-лучей). Сначала рассмотрим детекторы рентгеновского и гамма-излучения, а затем детекторы заряженных частиц.

Детекторы рентгеновского и гамма-излучения.

Классический образ искателя урана предполагает седеющего, измученного жарой субъекта, который бродит по пустыне со счетчиком Гейгера в руке. В наши дни в отношении детекторов достигнут значительный прогресс. Во всех современных детекторах используется следующий эффект: энергия поступающего в детектор фотона используется для ионизации какого-либо атома, при этом благодаря фотоэлектрическому эффекту излучается электрон. С этим электроном поступают по-разному в различных типах датчиков.

Рис. 15.19. Пропорциональный счетчик частиц.

Ионизационная камера, пропорциональный счетчик, счетчик Гейгера. Эти детекторы состоят из цилиндрической (как правило) камеры, имеющей в диаметре несколько сантиметров, и проходящего в центре тонкого провода. Камера бывает заполнена каким-либо газом или смесью газов. С одной стороны имеется узкое «окошко» из материала, пропускающего интересующее вас излучение (пластик, бериллий и т.п.). Центральный провод имеет положительный потенциал и подключается к некоторой электронной схеме. Типичная конструкция такого детектора представлена на рис. 15.19.

Когда в камере появляется квант излучения, он ионизирует атом, и тот испускает фотоэлектрон, последний затем отдает энергию, ионизируя атомы газа до тех пор, пока запас энергии не иссякнет. Оказывается, что электрон отдает около 20 В энергии в расчете на создаваемую им пару электрон-ион, следовательно, полный заряд, высвобожденный фотоэлектроном, пропорционален энергии, которую первоначально несло излучение. В ионизационной камере этот заряд собирается и усиливается усилителем заряда (интегрирующим), который работает также как фотоумножитель. Итак, выходной импульс пропорционален энергии излучения. Аналогичным образом работает пропорциональный счетчик, но на его центральном проводе поддерживается более высокое напряжение, следовательно, притягиваемые к нему электроны вызывают дополнительную ионизацию и результирующий сигнал получается большим. Эффект умножения заряда позволяет использовать пропорциональные счетчики при небольших значениях энергии излучения (порядка киловольт и ниже), когда ионизационные счетчики использовать невозможно. В счетчике Гейгера на центральном проводе поддерживается достаточно высокое напряжение, при котором любая начальная ионизация порождает большой одиночный выходной импульс (фиксированной величины). В данном случае вы получаете хороший большой выходной импульс, но не имеете никакой информации об энергии рентгеновского излучения.

В разд. 15.16 вы познакомитесь с интересным прибором, называемым анализатором ширины импульсов, который позволяет преобразовать последовательность импульсов различной ширины в гистограмму. Если ширина импульса является мерой энергии частицы, то с помощью такого прибора получим не что иное, как энергетический спектр! Итак, с помощью пропорционального счетчика (но не счетчика Гейгера) можно проводить спектрографический анализ излучения.

Подобные газонаполненные счетчики используют в диапазоне значений энергии от до . Пропорциональные счетчики обладают разрешающей способностью порядка 15% при значении энергии (распространенная для излучения калибровка, которую обеспечивает распад железа-55). Они недороги и могут иметь как очень большие, так и очень маленькие габариты, но для них требуется высокостабильный источник питания (умножение растет по экспоненциальному закону с напряжением), и они не отличаются высоким быстродействием (максимальная практически достижимая скорость счета грубо определяется величиной 25 000 имп/с).

Сцинтилляторы. Сцинтилляторы преобразуют энергию фотоэлектрона, электрона Комптона или пары электрон-позитрон в световой импульс, который воспринимается подключенным к прибору фотоумножителем.

Распространенным сцинтиллятором является кристаллический иодид натрия с примесью талия. Как и в пропорциональном счетчике, в этом датчике выходной импульс пропорционален поступающей энергии рентгеновского (или гамма) излучения, а это значит, что с помощью анализатора ширины импульсов можно производить спектрографический анализ (разд. 15.16). Обычно кристалл обеспечивает разрешение порядка 6% при значении энергии 1,3 МэВ (распространенная для гамма-излучения калибровка, которую обеспечивает распад ) и используется в энергетическом диапазоне от до нескольких ГэВ. Световой импульс имеет длительность порядка , следовательно, эти детекторы обладают достаточно высоким быстродействием. Кристаллы могут иметь различные размеры, вплоть до нескольких сантиметров, однако они сильно поглощают воду, следовательно, хранить их следует в закрытом виде. В связи с тем, что свет нужно каким-то образом устранять, кристаллы обычно поставляют в металлическом корпусе, имеющем окошко, закрытое тонкой пластинкой алюминия или бериллия, в котором находится интегральный фотоумножитель.

В сцинтилляторах используют также пластики (органические материалы), которые отличаются тем, что они очень недороги. Разрешение у них хуже, чем у иодида натрия, и используют их в основном в тех случаях, когда имеют дело с энергией выше 1 МэВ. Световые импульсы получаются очень короткими - их длительность составляет примерно 10 не. В биологических исследованиях в качестве сцинтилляторов используют жидкости («коктейли»). При этом материал, исследуемый на радиоактивность, примешивается к «коктейлю», который помещается в темную камеру с фотоумножителем. В биологических лабораториях можно встретить очень красивые приборы, в которых процесс автоматизирован; в них через камеру счетчика одна за другой помещаются различные ампулы и регистрируются результаты.

Детекторы на твердом теле. Как и в других областях электроники, революцию в области обнаружения рентгеновского и гамма-излучения произвели достижения в технологии изготовления кремниевых и германиевых полупроводников. Детекторы на твердом теле работают точно так же, как классические ионизационные камеры, но активный объем камеры заполняется в данном случае непроводящим (чистым) полупроводником. Приложенный потенциал порядка 1000 В вызывает ионизацию и генерирует импульс заряда. При использовании кремния электрон теряет всего около 2 эВ на пару электрон-ион, значит, при той же энергии рентгеновского излучения создается гораздо больше ионов, чем в пропорциональном газонаполненном детекторе, и обеспечивается лучшее энергетическое разрешение благодаря более представительным статистическим данным. Некоторые другие, менее значительные эффекты также способствуют тому, что прибор имеет улучшенные характеристики.

Выпускают несколько разновидностей детекторов на твердом теле: на основе (называются ), («жил-ли») и чистого германия (или IG), отличающихся друг от друга материалом полупроводника и примесей, используемых для того, чтобы обеспечить изолирующие свойства. Все они работают при температуре жидкого азота , и все типы полупроводников с примесью лития нужно постоянно держать в холодном состоянии (повышенная температура влияет на детектор так же плохо, как на свежую рыбу). Типовые детекторы на основе имеют диаметр от 4 до 16 мм и используются в энергетическом диапазоне от 1 до . Детекторы на основе и IG используют при работе с более высокими значениями энергии, от до 10 МэВ. Хорошие детекторы на основе обладают разрешением 150 эВ при значении энергии разрешение в 6-9 раз лучше, чем у пропорциональных счетчиков), германиевые детекторы обладают разрешением порядка при значении энергии 1,3 МэВ .

Рис. 15.20. Рентгеновский спектр листа нержавеющей стали, полученный с помощью аргонового пропорционального счетчика и детектора на основе .

Для того чтобы проиллюстрировать, что дает такое высокое разрешение, мы бомбардировали лист нержавеющей стали протонами с энергией 2 МэВ и проанализировали полученный рентгеновский спектр. Это явление называют рентгеновской эмиссией за счет протонов, и оно является мощным средством анализа веществ, при котором используется взаимное расположение спектров элементов. На рис. 15.20 показан энергетический спектр (полученный с помощью анализатора ширины импульсов), каждому элементу соответствуют два видимых рентгеновских импульса, по крайней мере при использовании детектора на основе . На графике можно видеть железо, никель и хром. Если нижнюю часть графика укрупнить, то можно будет увидеть и другие элементы. При использовании пропорционального счетчика получается «каша».

Рис. 15.21 иллюстрирует аналогичное положение для детекторов гамма-излучения.

Рис. 15.21. Гамма-спектр кобальта-60, полученный с помощью сцинтиллятора на основе иодида натрия и детектора на основе Ge(Li). (Из брошюры Canberra Ge(Li) Detector Systems фирмы Canberra Industries, Inc.)

Рис. 15.22. Криостат с датчиком . (С разрешения фирмы Canberra Industries, )

На этот раз сравниваются между собой сцинтиллятор на основе и датчик на основе . Этот график нам помогли получить коллеги из фирмы Canberra Industries. Выражаем благодарность мистеру Тенчу. Как и в предыдущем случае, преимущество в отношении разрешающей способности оказалось на стороне детекторов на твердом теле.

Детекторы на твердом теле обладают самым высоким энергетическим разрешением среди всех детекторов рентгеновского и гамма-излучения, но у них есть и недостатки: маленькая активная область в большом и неуклюжем корпусе (см., например, рис. 15.22), относительно невысокое быстродействие (время восстановления составляет и более), высокая стоимость и, кроме того, для работы с ними нужно запастись большим терпением (но может быть вам и понравится нянчиться с «пожирателем» жидкого азота, кто знает).

Детекторы заряженных частиц.

Детекторы, которые мы только что описали, предназначены для определения энергии фотонов (рентгеновских и гамма-лучей), но не элементарных частиц. Детекторы элементарных частиц имеют несколько иной облик; кроме того, заряженные частицы отклоняются электрическим и магнитным полями в соответствии с их зарядом, массой и энергией, благодаря чему измерять энергию заряженных частиц значительно проще.

Детекторы с поверхностным энергетическим барьером. Эти германиевые и кремниевые детекторы аналогичны детекторам из . Однако их не требуется охлаждать, а это намного упрощает конструктивное оформление прибора. (А у вас появляется шанс получить свободное время!) Детекторы с поверхностным энергетическим барьером выпускают с диаметрами от 3 до 50 мм. Их используют в энергетическом диапазоне от 1 МэВ до сотен МэВ, они обладают разрешением от 0,2 до 1% при значении энергии альфа-частиц, равном 5,5 МэВ (распространенная энергетическая калибровка, которая обеспечивается при распаде америция-241).

Детекторы Черенкова. При очень высоких значениях энергии (1 ГэВ и выше) заряженная частица может опередить свет в материальной среде и вызвать излучение Черенкова, «видимую ударную волну». Они находят широкое применение при экспериментах в физике высоких энергий.

Ионизационные камеры. Классическую газонаполненную камеру, которую мы рассмотрели выше в связи с рентгеновским излучением, можно использовать также в качестве детектора заряженных частиц. Простейшая ионизационная камера состоит из камеры, заполненной аргоном, и проходящего по всей ее длине провода. В зависимости от того, для работы с какими энергиями предназначена камера, ее длина может составлять от нескольких сантиметров до нескольких десятков сантиметров; в некоторых разновидностях прибора используют не один, а несколько проводов или пластин и другие газы-наполнители.

Душевые камеры. Душевая камера является электронным эквивалентом ионизационной камеры. Электрон попадает в камеру, заполненную жидким аргоном, и создает «душ» из заряженных частиц, которые затем притягиваются к заряженным пластинам.

Специалисты в области физики высоких энергий любят называть такие приборы калориметрами.

Сцинтилляционные камеры. Заряженную частицу можно обнаружить с очень хорошим энергетическим разрешением с помощью фотоумножителей по ультрафиолетовым вспышкам, которые возникают при движении заряженной частицы в камере, заполненной жидким или газообразным аргоном или ксеноном. Сцинтилляционные камеры обладают более высоким быстродействием по сравнению с ионизационными и душевыми камерами.

Дрейфовые камеры. Это новейшее достижение в области физики высоких энергий, которое обусловлено успехами в области быстродействующих диалоговых вычислительных систем. Концепция их проста: камера, в которой под атмосферным давлением находится газ (обычная смесь аргона с этаном) и множество проводов с приложенным к ним напряжением. В камере действуют электрические поля, и когда в нее попадает заряженная частица, ионизирующая газ, ионы оказываются в сфере действия проводов. Отслеживаются амплитуды сигналов и моменты времени по всем проводам (вот здесь и приходит на помощь ЭВМ), и на основе этой информации строится траектория движения частицы. Если в камере действует еще магнитное поле, то можно также определить количество движения.

Дрейфовая камера завоевала положение универсального детектора заряженных частиц для физики высоких энергий. Она может обеспечить пространственное разрешение порядка 0,2 мм и выше для объемов, которые могут вместить даже вас.

1
Оглавление
email@scask.ru