Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
Vectors are written in boldface upright type, e.g., $\mathbf{r}, \mathbf{F}$; the same letters printed in lightface italic type $(r, F)$ denote the modulus of a vector.
Unit vectors
$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors of the Cartesian coordinates $x, y, z$ (sometimes the unit vectors are denoted as $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$ ),
$\mathbf{e}_{\rho}, \mathbf{e}_{\varphi}, \mathbf{e}_{z}$ are the unit vectors of the cylindrical coordinates $\rho, \varphi, z$, $\mathbf{n}, \boldsymbol{\tau}$ are the unit vectors of a normal and a tangent.
Mean values are taken in angle brackets \langle\rangle , e.g., $\langle\mathbf{v}\rangle,\langle P\rangle$.
Symbols $\Delta, d$, and $\delta$ in front of quantities denote:
$\Delta$, the finite increment of a quantity, e.g. $\Delta \mathrm{r}=\mathrm{r}_{2}-\mathrm{r}_{1} ; \Delta U=$ $=U_{2}-U_{1}$,
$d$, the differential (infinitesimal increment), e.g. $d \mathbf{r}, d U$,
$\delta$, the elementary value of a quantity, e.g. $\delta A$, the elementary work.
Time derivative of an arbitrary function $f$ is denoted by $d f / d t$, or by a dot over a letter, $\dot{f}$.
Vector operator $
abla$ (\”nabla\”). It is used to denote the following operations:
$\boldsymbol{
abla}_{\varphi}$, the gradient of $\varphi(\operatorname{grad} \varphi)$.
$\boldsymbol{
abla} \cdot \mathbf{E}$, the divergence of $\mathbf{E}(\operatorname{div} \mathbf{E})$,
$\boldsymbol{
abla} \times \mathbf{E}$, the curl of $\mathbf{E}$ (curl $\mathbf{E}$ ).
Integrals of any multiplicity are denoted by a single sign $\int$ and differ only by the integration element: $d V$, a volume element, $d \mathbf{S}$, a surface element, and $d \mathbf{r}$, a line element. The sign $\oint$ denotes an integral over a closed surface, or around a closed loop.