Главная > ЗАДАЧИ ПО ОБЩЕЙ ФИЗИКЕ (И. Е. Иродов) - На английском языке
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

— Total energy and momentum of a relativistie particle:
where T is the kinetic energy of the partiele.
— When eremisine collinions of partietes it pays to us the isvariant:
whers E asd p are the total energy asd the lotal momentum of the system prior to collision,, is the rest masergy the tormed particle.
* Threshold (minisaly kinetic energy of : partiele m atriking a statiosary particle M and activating the endoergic Faction n+Mm4+m4+,
rm=(m1+m1+)n(n+m22Men
where m3,M1,m1,m1, ary the reat mases of the reapective particles.
O˙, Quantuin numbers classifying elementary particles:
Q. electrie charg.
B. baryo chars.
r. istopic spin, rz, its projection,
s. strangenesis, s2=2.0,B.
Y, hypertharge, Y=B+s.
— Relation betwees quantan numbers of strongly interseting partieles:
Q=T3+r2=T3+B+s2.
— Intersetions of particles abey the laws of censervation of the Q,L and B charges. Is strong interactions the laws of conservation of S (or Y ), T, and its propection r aris also valid.
6.291. Calculate the kinetic energies of protons whose momenta are 0.10,1.0, and 10GeV/c, where c is the velocity of light.
6.292. Find the mean path travelled by pions whose kinetic energy exceeds their rest energy η=1.2 times. The mean lifetime of very slow pions is τ4=25.5 ns.
6.293. Negative pions with kinetic energy T=100MeV travel an average distance t=11 m Irom their origin to decay. Find the proper lifetime of these pions.
6.294. There is a narrow beam of negative pions with kinetic energy T equal to the rest energy of these particles. Find the ratio of fuxes at the sections of the beam separated by a distance t 20 m. The proper mean lifetime of these pions is τ4=25.5 ns.
6.295. A stationary positive pion disintegrated into a muon and a neutrino. Find the kinetic energy of the muon and the energy of the neutrino.
6.296. Find the kinetic energy of a neutron emerging as a result of the decay of a stationary Zhyperon (Σn+π).
6.297. A stationary positive muon disintegrated into a positron and two neutrinos. Find the greatest possible kinetic energy of the positron.
6.298. A stationary neutral particle disintegrated inte a proton with kinetic energy T=5.3MeV and a negative pion. Find the mass of that particle. What is its name?
6.299. A negative pion with kinetic energy T=50MeV disintegrated during its flight inte a muon and a neutrino. Find the energy of the neutrino outgoing at right angles to the pion’s motion direction.
6.300. A Σ ‘ hyperon with kinetic energy Tz=320MeV disintegrated during its flight into a neutral particle and a positive pion outgoing with kinetie energy Tn=42MeV at right angles to the hyperon’s motion direction. Find the rest mass of the neutral particle (in MeV units).
6.301. A neutral pion disintegrated during its alight into two gamms quants with equal energies. The sngle of divergence of gamma quanta is θ=60. Find the kinetic energy of the pion and of each gamma quantum.
6.302. A relativistic particle with rest mass m collides with a stationary particle of mass M and activates a reaction leading to formation of new particles: m+Mm1+m2+, where the rest masses of newly formed partieles are written on the right-hand side. Making use of the invariance of the quantity Exp2c2, demonstrate that the threshold kinetic energy of the particle m required for this reaction is defined by Eq. (6.7c).
6.303. A positron with kinetic energy T=750keV strikes a stationary free electron. As a result of annihilation, two gamma quanta with equal energies appear. Find the angle of divergence between them.
6.304. Find the threshold energy of gamma quantum required to form
(a) an electron-positron pair in the field of a stationary electron;
(b) a pair of pions of opposite signs in the field of a stationary proton.
6.305. Protons with kinetic energy T strike a stationary hydrogen target. Find the threshold values of T for the following reactions:
(a) p+pp+p+p+p~; (b) p+pp+p+π0.
6.306. A hydrogen target is bombarded by pions. Calculate the threshold values of kinetic energies of these pions making possible the following reactions:
(a) π+pK++Σ; (b) π0+pK++Λ0.
6.307. Find the strangeness S and the hypercharge Y of a neutral elementary particle whose isotopic spin projection is Tz=+1/2 and baryon charge B=+1. What particle is this?
6.308. Which of the following processes are forbidden by the law of conservation of lepton charge:
(1) np+e+v;
(4) p+en+v;
(2) π+μ++e+e+;
(5) μ+e++v+vv~;
(3) πμ+v;
(6) Kμ+v~ ?
6.309. Which of the following processes are forbidden by the law of conservation of strangeness:
(1) π+pΣ+K+;
(2) π+pΣ++K;
(4) n+pΛ0+Σ+;
(5) π+nΞ+K++K;
(3) π+pK++K+n;
(6) K+pΩ+K++K0 ?
6.310. Indicate the reasons why the following processes are forbidden:
(1) ΣΛ0+π;
(2) π+pK++K;
(3) K+nΩ+K++K0;
(4) n+pΣ++Λ0;
(5) πμ+e++e;
(6) μe+ve+v~μ.

1
Оглавление
email@scask.ru