Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике § 14. Задача динамического программирования в общем виде. Принцип оптимальностиРассмотренные выше простейшие задачи динамического программирования дают понятие об общей идее метода: пошаговая оптимизация, проходимая в одном направлении «условно», в другом — «безусловно». Метод динамического программирования является очень мощным и плодотворным методом оптимизации управления; ему не страшны ни целочислонность решения, ни нелинейность целевой функции, ни вид ограничений, накладываемых на решение. По в отличие от линейного программирования динамическое программирование не сводится к какой-либо стандартной вычислительной процедуре; оно может быть передано на машину только после того, как записаны соответствующие формулы, а это часто бывает не так-то легко. В этом параграфе мы дадим нечто вроде «сводки советов начинающим» — как ставить задачи динамического программирования, в каком порядке их решать, как записывать и т. д. Первый вопрос, на который нужно ответить ставящему задачу: какими параметрами характеризуется состояние управляемой системы S перед каждым шагом? От удачного выбора набора этих параметров часто зависит возможность успешно решить задачу оптимизации. В трех конкретных примерах, которые мы решали в предыдущем параграфе, состояние системы характеризовалось очень небольшим числом параметров: двумя координатами — в первом примере, одним числом — во втором и третьем. Но такие ультрапростые задачи не так уже часто встречаются на практике. Если, как это обычно и бывает, состояние системы описывается многими параметрами (так называемыми «фазовыми координатами»), то становится трудно перед каждым шагом перебрать все их варианты и для каждого найти оптимальное условное управление. Последнее еще больше затрудняется в случае, когда число возможных вариантов управления велико. В этих случаях над нами повисает, по меткому выражению Р. Веллмана, «проклятие многомерности» — бич не только метода динамического программирования, но и всех других методов оптимизации. Обычно задачи динамического программирования решаются не вручную, а на ЭВМ, одяако многие такие задачи не под силу даже современным машинам. Поэтому очень важно уметь правильно и «скромно» поставить задачу, не переобременяя ее лишними подробностями, упрощая елико возможно описание управляемой системы и вариантов управления. Так что в методе динамического программирования очень многое зависит от искусства и опыта исследователя. Вторая задача после описания системы и перечня управлений — это членение на шаги (этапы). Иногда (на счастье) оно бывает задано в самой постановке задачи (например, хозяйственные годы в экономических задачах), но часто членение на шаги приходится вводить искусственно как мы сделали, например, в задаче 1 § 13. Если бы мы в этой задаче не ограничились самым примитивным случаем всего двух управлений («с» и «в»), то было бы удобнее членение на шаги произвести иначе, например, считая за «шаг» переход с одной прямой, параллельной оси ординат, на другую. Можно было бы вместо прямых рассмотреть окружности с центром в точке А или же другие кривые. Все такие способы выбора наивыгоднейшего пути неизбежно ограничивают выбор возможных направлений. Если за «шаги» считать переходы с одной прямой, параллельной оси ординат, на другую, то здесь множество возможных управлений не предусматривает «пути назад», т. е. с более восточной прямой на более западную. В большинстве задач практики такие ограничения естественны (например, трудно себе представить, чтобы наивыгоднейшая траектория космической ракеты, пущенной с Земли, на каких-то участках включала движение «назад», ближе к Земле). Но бывает и другая обстановка. Например, путь по сильно пересеченной местности («серпантинная» дорога в горах) часто «петляет» и возвращается ближе к исходному пункту. При постановке задачи динамического программирования, в частности при выборе системы координат и способа членения на шаги, должны быть учтены все разумные ограничения, накладываемые на управление. Как быть с числом шагов ? С первого взгляда может показаться, что чем больше , тем лучше. Это не совсем так. При увеличении возрастает объем расчетов, а это не всегда оправдано. Число шагов нужно выбирать с учетом двух обстоятельств: 1) шаг должен быть достаточно мелким для того, чтобы процедура оптимизации шагового управления была достаточно проста, и 2) шаг должен быть не слишком мелким, чтобы не производить ненужных расчетов, только усложняющих процедуру поиска оптимального решения, но не приводящих к существенному изменению оптимума целевой функции. В любом случае практики нас интересует не строго оптимальное, а «приемлемое» решение, не слишком отличающееся от оптимального по значению выигрыша Сформулируем общий принцип, лежащий в основе решения всех задач динамического программирования (его часто называют «принципом оптимальности»): Каково бы ни было состояние системы S перед очередным шагом, надо выбирать управление на этом шаге так, чтобы выигрыш на данном шаге плюс оптимальный выигрыш на всех последующих шагах был максимальным. По-видимому, полное понимание этого принципа делается возможным (для лиц с обычным математическим развитием) только после рассмотрения ряда примеров, поэтому мы и приводим этот основной принцип не в начале главы (как это было бы естественно для математика), а лишь после решения ряда примеров. А теперь сформулируем несколько практических рекомендаций, полезных начинающему при постановке задач динамического программирования. Эту постановку удобно проводить в следующем порядке. 1. Выбрать параметры (фазовые координаты), характеризующие состояние S управляемой системы перед каждым шагом. 2. Расчленить операцию на этапы (шаги). 3. Выяснить набор шаговых управлений для каждого шага и налагаемые на них ограничения. 4. Определить, какой выигрыш приносит на шаге управление если перед этим система была в состоянии S, т. е. записать «функции выигрыша»:
5. Определить, как изменяется состояние S системы S под влиянием управления на шаге: оно переходит в новое состояние
«Функции изменения состояния» (14.2) тоже должны быть записаны. 6. Записать основное рекуррентное уравнение динамического программирования, выражающее условный оптимальный выигрыш (начиная с шага и до конца) через уже известную функцию
Этому выигрышу соответствует условное оптимальное управление на шаге (подчеркнем, что в уже известною функцию ) надо вместо S подставить измененное состояние 7. Произвести условную оптимизацию последнего шага, задаваясь гаммой состояний ?, из которых можно за один шаг дойти до конечного состояния, вычисляя для каждого из них условный оптимальный выигрыш по формуле
и находя условное оптимальное управление для которого этот максимум достигается. 8. Произвести условную оптимизацию и т. д. шагов по формуле (14.3), полагая в ней для каждого из шагов указать условное оптимальное управление при котором максимум достигается. Заметим, что если состояние системы в начальный момент известно (а это обычно бывает так), то на первом шаге варьировать состояние системы не нужно — прямо находим оптимальный выигрыш для данною начального состояния Это и есть оптимальный выигрыш за всю операцию
9. Произвести безусловную оптимизацию управления, «читая» соответствующие рекомендации на каждом шаге. Взять найденное оптимальное управление на первом шаге изменить состояние системы по формуле (14.2); для вновь найденного состояния найти оптимальное управление на втором шаге и т. д. до конца. Сделаем несколько дополнительных замечаний общего характера. До сих пор мы рассматривали только аддитивные задачи динамического программирования, в которых выигрыш за всю операцию равен сумме выигрышей на отдельных шагах. Но метод динамического программирования применим также и к задачам с так называемым «мультипликативным» критерием, имеющим вид произведения:
(если только выигрыши положительны). Эти задачи решаются точно так же, как задачи с аддитивным критерием, с той единственной разницей, что в основном уравнении (14.3) вместо знака «плюс» ставится знак умножения X:
В заключение — несколько слов о так называемых «бесконечношаговых» задачах динамического программирования. На практике встречаются случаи, когда планировать операцию приходится не на строго определенный, а на неопределенно долгий промежуток времени, и нас может интересовать решение задачи оптимального управления безотносительно к тому, на каком именно шаге операция заканчивается. В таких случаях бывает удобно рассмотреть в качестве модели явления бесконечношаговый управляемый процесс, где не существует «особенного» по сравнению с другими последнего шага (все шаги равноправны). Для этого, разумеется, нужно, чтобы функции выигрыша и функции изменения состояния не зависели от номера шага. Интересующегося этим случаем читателя отошлем к руководству [10]. Вообще, для более подробного ознакомления с методом динамического программирования полезно обратиться к руководствам [6, 10, 11, 7].
|
1 |
Оглавление
|