Главная > Разработка имитационных моделей в среде MatLab
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

1.7. Основы технологии имитационного моделирования

1.7.1 Управление модельным временем

При разработке практически любой имитационной модели и пла­нировании проведения модельных экспериментов необходимо соотносить между собой три представления времени:

• реальное время, в котором происходит функционирование имитируемой системы;

• модельное (или, как его еще называют, системное) время, в масштабе которо­го организуется работа модели;

• машинное время, отражающее затраты времени ЭВМ на проведение ими­тации.

С помощью механизма модельного времени решаются следующие задачи:

1) отображается переход моделируемой системы из одного состояния в другое;

2) производится синхронизация работы компонент модели;

3) изменяется масштаб времени «жизни» (функционирования) исследуемой системы;

4) производится управление ходом модельного эксперимента;

5) моделируется квазипараллельная реализация событий в модели.

Необходимость решения последней задачи связана с тем, что в распоряжении исследователя находится, как правило, однопроцессорная вычислительная систе­ма, а модель может содержать значительно большее число одновременно работаю­щих подсистем. Поэтому действительно параллельная (одновременная) реализа­ция всех компонент модели невозможна. Даже если используется так называемая распределенная модель, реализуемая на нескольких узлах вычислительной сети, совсем необязательно число узлов будет совпадать с числом одновременно рабо­тающих компонент модели.

Существуют два метода реализации механизма модельного времени — с постоянным шагом и по особым состояниям.

Выбор метода реализации механизма модельного времени зависит от назначе­ния модели, ее сложности, характера исследуемых процессов, требуемой точности результатов и т. д.

При использовании метода постоянного шага отсчет системного времени ве­дется через фиксированные, выбранные исследователем интервалы времени. Со­бытия в модели считаются наступившими в момент окончания этого интервала. Погрешность в измерении временных характеристик системы в этом случае зави­сит от величины шага моделирования . Метод постоянного шага предпочтительнее, если:

• события появляются регулярно, их распределение во времени достаточно рав­номерно;

• число событий велико и моменты их появления близки;

• невозможно заранее определить моменты появления событий.

 

 

Данный метод управления модельным временем достаточно просто реализовать в том случае, когда условия появления событий всех типов в модели можно пред­ставить как функцию времени.

В общем виде алгоритм моделирования с постоянным шагом представлен на рис. 1.8 ( — текущее значение модельного времени,  — интервал моделиро­вания).

 

Выбор величины шага моделирования является нелегким и очень важным делом. Универсальной методики решения этой проблемы не су­ществует, но во многих случаях можно использовать один из следующих под­ходов:

• принимать величину шага равной средней интенсивности возникновения со­бытий различных типов;

• выбирать величину Dt равной среднему интервалу между наиболее частыми (или наиболее важными) событиями.

При моделировании по особым состояниям системное время каждый раз из­меняется на величину, строго соответствующую интервалу времени до момента наступления очередного события. В этом случае события обрабатываются в поряд­ке их наступления, а одновременно наступившими считаются только те, которые являются одновременными в действительности.

Метод моделирования по особым состояниям сложнее в реализации, так как для него требуется разработка специальной процедуры планирования событий (так называемого календаря событий).

Моделирование по особым состояниям целесообразно использовать, если:

• события распределяются во времени неравномерно или интервалы между ними велики;

• предъявляются повышенные требования к точности определения взаим-ного положения событий во времени;

• необходимо реализовать квазипараллельную обработку одновременных событии.

Дополнительное достоинство метода заключается в том, что он позволяет эко­номить машинное время, особенно при моделировании систем периодического дей­ствия, в которых события длительное время могут не наступать.

Обобщенная схема алгоритма моделирования по особым состояниям представ­лена на рис. 1.9 (- прогнозируемый момент наступления -го события.

 

Categories

1
Оглавление
email@scask.ru