Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.1.5. Голографические индикаторы на лобовом стеклеДля использования в прицельно-навигационной системе ночного, видения «Лантирн», предназначенной для истребителя системы при воспроизведении изображении и пропускание света без розового оттенка от внешней обстановки В процессе этой работы решалась проблема приведения наблюдаемого изображения в соответствие с изображением на индикаторе при полетах на малых высотах в ночное время (система ночного видения давала несколько увеличенное изображение), которым летчик не мог пользоваться, поскольку при этом как бы искажалась картина, которую можно было бы получать при визуальном обзоре. Исследования показали, что в этих случаях летчик теряет уверенность, стремится лететь с меньшей скоростью и на большей высоте. Необходимо было создать систему, обеспечивающую получение действительного изображения достаточно большого размера, чтобы летчик мог пилотировать самолет визуально ночью и в сложных метеоусловиях, лишь изредка сверяясь с приборами. Для этого потребовалось широкое поле индикатора, при котором расширяются возможности летчика по пилотированию самолета, обнаружению целей в стороне от маршрута и производству противозенитного маневра или маневра атаки целей. Для обеспечения этих маневров необходимо большое поле зрения по углу места и азимуту. С увеличением угла крена самолета летчик должен иметь широкое поле зрения по вертикали. Установка коллимирующего элемента как можно выше и ближе к глазам летчика была достигнута за счет применения голографических элементов в качестве зеркал для изменения направления хода пучка лучей. Это хотя и усложнило конструкцию системы, однако дало возможность использовать простые и дешевые голографические элементы с высокой отдачей. В США разрабатывается [47] топографический координатор для распознавания и сопровождения целей. Основным назначением такого коррелятора является выработка и контроль сигналов управления наведения ракеты на среднем и заключительном участках траектории полета. Это достигается путем мгновенного сравнения изображений земной поверхности, находящейся в поле зрения системы в нижней и передней полусфере, с изображением различных участков земной поверхности по заданной траектории, хранимым в запоминающем устройстве системы. Таким образом обеспечивается возможность непрерывного определения местонахождения ракеты на траектории с использованием близко лежащих астков поверхности, что позволяет проводить коррекцию курса в условиях частичного затемнения местности облаками. Высокая точность на заключительном этапе полета достигается с помощью сигналов коррекции с частотой меньше 1 Гц. Для системы управления ракетой не требуется инерциальная система координат и знание координаты точного (абсолютного) положения цели. Как сообщается, исходные данные для данной системы должны обеспечиваться предварительной аэро- или космической разведкой и состоять из серии последовательных кадров, представляющих собой Фурье-спектр изображения или панорамные фотографии местности, как это делается при использовании существующего площадного коррелятора местности. Применение этой системы, как утверждают зарубежные специалисты, позволит производить пуски ракет с носителя, находящегося вне зоны действия ПВО противника, с любой высоты и точки траектории, при любом ракурсе, обеспечит высокую помехоустойчивость (система пассивна), наведения управляемого оружия после пуска по заранее выбранным и хорошо замаскированным стационарным целям. Образен аппаратуры включает в себя входной объектив, устройство преобразования текущего изображения, работающего в реальном масштабе времени, голографической линзовой матрицы, согласованной с голографическим запоминающим устройством, лазера, выходного фотодетектора и электронных блоков. Принцип действия такого Фурье-анализатора был рассмотрен нами ранее. Особенностью данной схемы является использование линзовой матрицы из 100 элементов, имеющей формат 1. Высокая обнаружительная способность как при низкой, так и при высокой контрастности изображения, сцособность правильно опознать входную информацию, если даже имеется только часть ее (например, менее 50% при частичном затемнении облаками). 2. Возможность плавного автоматического перехода сигналов сопровождения при смене одного изображения местности другим, содержащимся в запоминающем устройстве. 3. Возможность расширения зоны пуска ракеты путем запоминания нескольких близко расположенных участков местности, из которых каждая имеет соответствующую ориентацию на цель. В процессе полета ракета может быть быстро переведена на заданную траекторию, зависящую от динамики ракеты.
|
1 |
Оглавление
|