Главная > Классическая электродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ЗАДАЧИ

2.1. Точечный заряд q помещен на расстоянии d от бесконечного плоского проводника, имеющего нулевой потенциал. С помощью метода изображений найти:

а) поверхностную плотность зарядов (построить график);

б) силу взаимодействия заряда с плоскостью (использовать закон Кулона для силы взаимодействия заряда с его изображением);

в) полную силу, действующую на плоскость (определить ее интегрированием величины по всей плоскости);

г) работу, которую необходимо совершить, чтобы удалить заряд q в бесконечность;

д) потенциальную энергию взаимодействия заряда q с его изображением (сравнить результат с п. «г» и проанализировать);

е) выразить результат п. «г» в электрон-вольтах для случая, когда электрон находился первоначально на расстоянии 1 А от поверхности.

2.2. С помощью метода изображений рассмотреть задачу о точечном заряде q, находящемся внутри полой заземленной проводящей сферы с внутренним радиусом а. Найти:

а) потенциал внутри сферы;

б) поверхностную плотность индуцированных зарядов;

в) величину и направление силы, действующей на заряд.

Меняется ли как-либо решение в случае, когда задан потенциал сферы V? Когда задан ее полный заряд

2.3. Две бесконечные заземленные проводящие плоскости расположены при Точечный заряд q расположен между плоскостями в точке , причем —

а) Найти расположение и величину всех зарядов-изображений, необходимых для того, чтобы удовлетворялись граничные условия для потенциала, и написать функцию Грина

б) Для заряда q, расположенного в точке , найти распределение поверхностной плотности зарядов, индуцируемых на каждой плоскости, и показать, что сумма зарядов, индуцируемых на обеих плоскостях, равна —

2.4. Рассмотреть задачу об определении потенциала в полупространстве по условиям Дирихле в плоскости (и по условию в бесконечности).

а) Написать соответствующую функцию Грина

б) Найти интегральное выражение для потенциала в произвольной точке Р с цилиндрическими координатами если в плоскости потенциал Ф равен константе V внутри окружности радиусом а с центром в начале координат и нулю вне этой окружности.

в) Показать, что на оси окружности потенциал равен

г) Показать, что на больших расстояниях потенциал может быть разложен в степенной ряд по и что первые члены ряда равны

Показать, что результаты п. согласуются друг с другом в общей области их применимости.

2.5. Изолированная сферическая проводящая оболочка радиусом а помещена в однородное электрическое поле Пусть оболочка разрезана на две полусферы плоскостью, перпендикулярной электрическому полю. Найти силу, необходимую для предотвращения разделения полусфер в случае:

а) когда сфера незаряжена;

б) когда полный заряд сферы равен

2.6. Большой плоскопараллельный конденсатор состоит из двух плоских проводящих пластин, на внутренней поверхности одной из которых имеется маленький полусферический выступ. Проводнике выступом радиусом а находится под нулевым потенциалом, потенциал второго проводника таков, что вдали от выступа электрическое поле между пластинами равно

а) Найти плотность поверхностного заряда в произвольной точке на плоскости и на выступе и построить график изменения плотности в зависимости от расстояния (или от угла).

б) Показать, что полная величина заряда на выступе равна

в) Показать, что если вместо другой проводящей пластины поместить заряд q как раз над выступом на расстоянии d от его центра, то заряд, индуцируемый на выступе, будет равен

2.7. Заряженная нить с линейной плотностью заряда помещена параллельно оси проводящего цилиндра радиусом b на расстоянии от оси. Считая потенциал цилиндра нулевым, найти методом изображений:

а) величину и положение зарядов-изображений;

б) потенциал в произвольной точке (в полярных координатах; прямую, соединяющую ось цилиндра с заряженной нитью, принять за ось ), в том числе его асимптотическое представление вдали от цилиндра;

в) плотность индуцированного поверхностного заряда (построить график плотности, отнесенной к для ;

г) силу, действующую на заряженную нить.

2.8. а) Найти функцию Грина для двумерной электростатической задачи, если задан потенциал на поверхности цилиндра радиусом b, и показать, что решение внутри цилиндра дается интегралом Пуассона

б) Длинная проводящая цилиндрическая оболочка радиусом b разделена узким продольным зазором на две половины, находящиеся соответственно под потенциалом Показать, что потенциал внутри цилиндра равен

где отсчитывается от плоскости, перпендикулярной плоскости зазора.

в) Рассчитать распределение поверхностной плотности заряда на обеих половинах цилиндра.

г) Какие изменения следует внести в решение, приведенное в п. «а», если требуется найти потенциал в области пространства, внешней по отношению к цилиндру?

2.9. а) Изолированная проводящая сфера находится под потенциалом V. Написать (тривиальное) выражение для потенциала электростатического поля во всем пространстве.

б) Применить теорему инверсии, взяв центр инверсии вне проводящей сферы. Убедиться непосредственно, что полученное решение описывает потенциал заземленной сферы в присутствии точечного заряда —VR, где R — радиус инверсии.

в) Каков физический смысл инвертированного решения в случае, когда центр инверсии находится внутри проводящей сферы?

2.10. Зная, что емкость тонкого плоского кругового проводящего диска радиусом а равна и что поверхностная плотность заряда на изолированном диске, находящемся под определенным потенциалом, пропорциональна где расстояние от центра диска,

а) показать, что методом инверсии можно найти потенциал бесконечной заземленной проводящей плоскости с круглым отверстием, в произвольной точке которого находится точечный заряд;

б) показать, что для случая единичного точечного заряда, расположенного в центре отверстия, индуцированный заряд на плоскости равен

в) показать, что являются частными случаями более общей задачи о нахождении потенциала заземленной проводящей сферической чаши в присутствии заряда, расположенного в некоторой точке срезанной ее части, которая также решается методом инверсии потенциала диска.

2.11. Полый куб ограничен проводящими гранями, определяемыми шестью плоскостями Грани и находятся под потенциалом V, остальные — под нулевым потен: циалом.

а) Найти потенциал в произвольной точке внутри куба.

б) Рассчитать численно потенцйал в центре куба с точностью до трех значащих цифр. Сколько членов ряда нужно удержать, чтобы получить требуемую точность? Сопоставить полученное численное значение со средним значением потенциала на гранях.

в) Найти распределение поверхностной плотности заряда на грани

1
Оглавление
email@scask.ru