Главная > Астрономия. 10 класс
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

III. ФИЗИЧЕСКАЯ ПРИРОДА ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ

13. МЕТОДЫ ИЗУЧЕНИЯ ФИЗИЧЕСКОЙ ПРИРОДЫ НЕБЕСНЫХ ТЕЛ

1. Применение спектрального анализа.

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа излучения качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если узкий пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает. За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но созданы специальные приемники инфракрасного излучения, например особым способом приготовленные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

На рисунке 39 показано устройство спектрографа. Свет попадает через узкую щель на объектив, который посылает его параллельным пучком на одну или несколько призм. В призме свет разлагается

Рис. 39. Схема устройства призменного спектрографа.

Рис. 40. Сравнение спектра Солнца (вверху) с лабораторным спектром паров железа.

на составные части и дает спектр. Его изображение строят линзой на фотопластинке и получают спектрограмму. В спектроскопе это изображение рассматривают через окуляр. В астрономических спектрографах, кроме призмы, используют также и дифракционную решетку, которая отражает свет и одновременно разлагает его в спектр.

Существуют следующие виды спектров.

Сплошной, или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. Каждый газ излучает свет строго определенных длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий источник, дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу (рис. 40). Например, две темные линии поглощения натрия расположены в желтой части спектра (Вы можете сравнением легко отождествить линии водорода в спектрах Солнца и Сириуса, используя рисунок заднего форзаца.)

Изучение спектров позволяет производить анализ химического состава газов, излучающих или поглощающих свет Количество

атомов или молекул, излучающих или поглощающих энергию, определяется по интенсивности линий. Чем больше атомов, тем ярче линия в спектре излучения или тем она темнее в спектре поглощения.

Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении излучения через атмосферу звезд. Поэтому спектры Солнца и звезд — это спектры поглощения. (Рассмотрим изображения разных спектров на форзаце.)

Надо помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.

Скорости движения небесных светил относительно Земли по лучу зрения (лучевые скорости) определяются при помощи спектрального анализа на основании принципа Доплера — Физо: если источник света и наблюдатель сближаются, то длины волн, определяющие положения спектральных линий, укорачиваются, а при их взаимном удалении длины волн увеличиваются. Это явление выражается формулой:

где — лучевая скорость относительного движения с ее знаком (минус при сближении), — нормальная длина волны света при неподвижном источнике, X — длина волны при движении источника и с — скорость света. Иначе говоря, при сближении наблюдателя и источника света линии спектра смещаются к его фиолетовому, а при удалении — к красному концу.

Скорости движения тел на Земле могли бы вызвать лишь ничтожные смещения линий в спектрах тел, но и скорости небесных тел (обычно десятки и сотни км/с) вызывают смещения столь малые, что их можно измерить на спектрограмме только под микроскопом.

Получив спектрограмму светила, над ней и под ней впечатывают спектры сравнения от земного источника излучения, например от ртутной или неоновой лампы (рис. 41). Спектр сравнения для нас неподвижен, и относительно него можно определять сдвиг линий спектра звезды. Он обычно составляет сотые или десятые доли миллиметра на фотографии. Чтобы выяснить, какому изменению соответствует полученный на спектрограмме сдвиг, надо знать масштаб спектра — на сколько меняется длина волны, если мы продвигаемся вдоль спектра на 1 мм. Подстановка в формулу величин позволяет определить — лучевую скорость движения светила.

Когда тело раскалено докрасна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в желтую, потом в зеленую часть и т. д. Теория излучения света, проверенная на опыте, показывает, что распределение яркости вдоль сплошного спектра зависит от температуры

Рис. 41. Смещение линии в спектре одной из звезд при ее движении по лучу зрения. Сверху и снизу — лабораторные спектры сравнения ванадия. Над ними написаны длины волн в ангстремах ( мкм).

тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют еще при помощи термоэлемента, помещенного в фокусе телескопа или специально созданных приемников инфракрасного излучения.

Итак, мы видим, что многие астрономические данные, например температура светил, определяются способами, проверяющими друг друга. Получаемые данные вполне достоверны. Они проверены многими учеными в разных странах.

(см. скан)

2. Оптические и радионаблюдения.

Мы выяснили, что разнообразные и ценные сведения о светилах дает астрономам спектральный анализ. Однако для изучения небесных объектов применяют и другие методы, например фотографирование светил при помощи астрографов. Астрограф — это телескоп, предназначенный специально для фотографирования участков ночного неба. Положения звезд на снятых негативах измеряют при помощи специальных приборов

в лаборатории. Негативы сохраняют в шкафах, где их ряды образуют «стеклянную фототеку». С помощью астрономических фотографий можно измерить медленные перемещения сравнительно близких звезд на фоне более далеких, увидеть изображения очень слабых объектов на негативе, измерить величину потоков излучения, приходящего от звезд, планет и других космических объектов. Для высокоточных измерений энергии световых потоков используют фотоэлектрические фотометры. В них свет от звезды, собираемый объективом телескопа, направляется на светочувствительный слой электронного вакуумного прибора — фотоумножителя, в котором возникает слабый ток, усиливаемый и регистрируемый специальными электронными приборами. Пропуская свет через специально подобранные цветные светофильтры, астрономы количественно и с большой точностью оценивают цвет объекта.

Наши представления о небесных телах и их системах чрезвычайно обогатились после того, как стало возможным изучать их радиоизлучение. Для этого созданы радиотелескопы различных систем. Антенны некоторых радиотелескопов похожи на обычные рефлекторы. Они собирают радиоволны в фокусе металлического вогнутого зеркала. Это зеркало можно сделать решетчатым (рис. 42) и громадных размеров — диаметром в десятки и сотни метров.

Другие радиотелескопы представляют собой огромные подвижные рамы, на которых параллельно друг другу укреплены металлические стержни или спирали (рис. 43). Приходящие радиоволны возбуждают в них электромагнитные колебания, которые после усиления поступают в очень чувствительную приемную радиоаппаратуру для регистрации радиоизлучения объекта.

Есть радиотелескопы, состоящие из отдельных антенн, удаленных друг от друга (иногда более чем на 1000 км), с помощью которых производятся одновременные наблюдения космического радиоисточник. Такой способ позволяет узнать структуру радиоисточника и измерить его угловой размер, даже если он во много раз меньше угловой секунды.

3. Обсерватории.

Астрономические исследования проводятся в научных институтах, университетах и обсерваториях. Пулковская обсерватория под Ленинградом (рис. 44) существует с 1839 г. и знаменита составлением точнейших звездных каталогов. Ее в прошлом

Рис. 42. Радиотелескоп с решетчатым зеркалом.

веке называли астрономической столицей мира. В ходе бурного развития науки в нашей стране было построено много других обсерваторий, в том числе в союзных республиках. К крупнейшим следует отнести Специальную астрофизическую обсерваторию на Северном Кавказе, обсерватории Крымскую (вблизи Симферополя), Бюраканскую (вблизи Еревана), Абастуманскую (вблизи Боржоми), Голосеевскую (в Киеве), Шемахинскую (вблизи Баку). Из институтов крупнейшие — Астрономический институт имени П. К. Штернберга при МГУ и Институт теоретической астрономии Академии наук СССР в Ленинграде.

Не каждая обсерватория ведет все виды астрономических работ, но на многих есть специальные инструменты, предназначенные для решения определенного класса астрономических задач, например для определения точного положения звезд на небе, а также быстродействующие счетные машины.

4. Исследования с помощью космической техники

Занимают особое место в методах изучения небесных тел и космической среды. Начало этих исследований было положено запуском в СССР в 1957 г. первого в мире искусственного спутника Земли, а затем полетом первого в мире космонавта, советского гражданина — Ю. А. Гагарина. К настоящему времени космонавтика сделала возможным:

1) создание внеатмосферных искусственных спутников Земли;

2) создание искусственных спутников Луны и планет; 3) доставку приборов, управляемых с Земли, на Луну и планеты; 4) создание автоматов, доставляющих с Луны пробы грунта; 5) полеты в космос лабораторий с людьми и высадку космонавтов на Луну.

Рис. 43. Радиотелескоп с антенной в форме спиралей, установленных на общей раме.

Рис. 44. Главное здание Пулковской обсерватории.

Внеатмосферные наблюдения позволяют принимать излучения, которые сильно поглощаются земной атмосферой: далекие ультрафиолетовые, рентгеновские и инфракрасные лучи, радиоизлучение некоторых длин волн, а также корпускулярные излучения Солнца и других тел. Внеатмосферные наблюдения Луны и планет, звезд и туманностей, межпланетной и межзвездной среды очень обогатили наши знания о природе и физических свойствах этих объектов.

1
Оглавление
email@scask.ru