Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2. АСТРОНОМИЧЕСКИЕ НАБЛЮДЕНИЯ И ТЕЛЕСКОПЫ1. Особенности астрономических наблюдений.В основе астрономии лежат наблюдения, производимые с Земли и лишь с 60-х годов нашего века выполняемые из космоса — с автоматических и других космических станций и даже с Луны Аппараты сделали возможным получение проб лунного грунта, доставку разных приборов и даже высадку людей на Луну. Но так пока можно исследовать только ближайшие к Земле небесные светила Играя такую же роль, как опыты в физике и химии, наблюдения в астрономии имеют ряд особенностей. Первая особенность состоит в том, что астрономические наблюдения в большинстве случаев пассивны по отношению к изучаемым объектам. Мы не можем активно влиять на небесные тела, ставить опыты (за исключением редких случаев), как это делают в физике, биологии, химии. Лишь использование космических аппаратов дало в этом отношении некоторые возможности. Кроме того, многие небесные явления протекают столь медленно, что наблюдения их требуют громадных сроков; так, например, изменение наклона земной оси к плоскости ее орбиты становится заметным лишь по истечении сотен лет. Поэтому для нас не потеряли своего значения некоторые наблюдения, производившиеся в Вавилоне и в Китае тысячи лет назад, хотя они и были, по современным понятиям, очень неточными
Рис. 1. Угловые измерения на небе и высота светила над горизонтом.
Рис. 2. Теодолит. Вторая особенность астрономических наблюдений состоит в следующем. Мы наблюдаем положение небесных тел и их движение с Земли, которая сама находится в движении. Поэтому вид неба для земного наблюдателя зависит не только от того, в каком месте Земли он находится, но и от того, в какое время суток и года он наблюдает. Например, когда у нас зимний день, в Южной Америке летняя ночь, и наоборот. Есть звезды, видимые лишь летом или зимой. Третья особенность астрономических наблюдений связана с тем, что все светила находятся от нас очень далеко, так далеко, что ни на глаз, ни в телескоп нельзя решить, какое из них ближе, какое дальше. Все они кажутся нам одинаково далекими. Поэтому при наблюдениях обычно выполняют угловые Лмерения и уже по ним часто делают выводы о линейных расстояниях и размерах тел. Расстояние между объектами на небе (например, звездами) измеряют углом, образованным лучами, идущими к объектам из точки наблюдения. Такое расстояние называется угловым и выражается в градусах и его долях. При этом считается, что две звезды находятся недалеко друг от друга на небе, если близки друг другу направления, по которым мы их видим (рис. 1, звезды А и В). Возможно, что третья звезда С, на небе более далекая от А, в пространстве к А ближе, чем звезда В. Угловое расстояние светила от горизонта называется высотой А (рис. 1) светила над горизонтом. Она выражается только в угловых единицах. Измерения высоты, углового расстояния объекта от горизонта, выполняют специальными угломерными оптическими инструментами, например теодолитом. Теодолит — это инструмент, основной частью которого служит зрительная труба, вращающаяся около вертикальной и горизонтальной осей (рис. 2). С осями
Рис. 3. При суточном вращении неба звезды в восточной стороне неба перемещаются вправо и вверх. скреплены круги, разделенные на градусы и минуты дуги. По этим кругам отсчитывают направление зрительной трубы. На кораблях и на самолетах угловые измерения выполняют прибором, называемым секстантом (секстаном). Видимые размеры небесных объектов также можно выразить в угловых единицах. Диаметры Солнца и Луны в угловой мере примерно одинаковы — около 0,5°, а в линейных единицах Солнце больше Луны по диаметру примерно в 400 раз, но оно во столько же раз от Земли дальше. Поэтому их угловые диаметры для нас почти равны. Как определяют линейные расстояния до небесных тел и их линейные размеры, будет рассказано в § 12 и 22. 2. Ваши наблюдения.Для лучшего усвоения астрономии вы должны как можно раньше приступить к наблюдениям небесных явлений и светил. Указания к наблюдениям невооруженным глазом даны в приложении VI. Нахождение созвездий, ориентировку на местности по Полярной звезде, знакомую вам из курса физической географии, и наблюдение суточного вращения неба (рис. 3 и 4) удобно выполнять с помощью подвижной карты звездного неба, приложенной к учебнику. Для приближенной оценки угловых расстояний на небе полезно знать, что угловое расстояние между двумя звездами «ковша» (а и Прежде всего надо ознакомиться с видом звездного неба, найти на нем планеты и убедиться в их перемещении относительно звезд или Солнца в течение 1—2 месяцев. (Об условиях видимости планет и некоторых небесных явлениях говорится в школьном астрономическом календаре на данный год.) Наряду с этим надо ознакомиться в телескоп с рельефом Луны, с солнечными пятнами, а затем уже и с другими светилами и явлениями, о которых сказано в приложении VI. Для этого ниже дается представление о телескопе
Рис. 4. Изменение положения созвездий Большой и Малой Медведицы относительно горизонта при суточном вращении неба. 3. Телескопы.Основным астрономическим прибором является телескоп. Телескоп с объективом из вогнутого зеркала называется рефлектором (рис. 5), а телескоп с объективом из линз — рефрактором (рис. 6). Назначение телескопа — собрать больше света от небесных источников и увеличить угол зрения, под которым виден небесный объект. Количество света, которое попадает в телескоп от наблюдаемого
Рис. 5. Крупнейший в мире советский телескоп-рефлектор с диаметром зеркала 6 м. объекта, пропорционально площади объектива Чем больше размер объектива телескопа, тем более слабые светящиеся объекты в него можно увидеть. Масштаб изображения, даваемого объективом телескопа, пропорционален фокусному расстоянию объектива, т. е. расстоянию от объектива, собирающего свет, до той плоскости, где получается изображение светила. Изображение небесного объекта можно фотографировать или рассматривать через окуляр (рис. 7). Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, а также — угловые расстояния между звездами, но звезды даже в очень сильный телескоп из-за огромной удаленности видны лишь как светящиеся точки. В рефракторе лучи, пройдя через объектив, преломляются, образуя изображение объекта в фокальной плоскости (рис. 7, а). В рефлекторе лучи от вогнутого зеркала отражаются и потом также собираются в фокальной плоскости (рис. 7, б). При изготовлении объектива телескопа стремятся свести к минимуму все искажения, которыми неизбежно обладает изображение объектов. Простая линза сильно искажает и окрашивает края изображения. Для уменьшения этих недостатков объектив изготовляют из нескольких линз с разной кривизной поверхностей и из разных сортов стекла. Поверхности вогнутого стеклянного зеркала, которая серебрится или алюминируется, придают для уменьшения искажений не сферическую форму, а несколько иную (параболическую). Советский оптик Д. Д. Максутов разработал систему телескопа, называемую менисковой. Она соединяет в себе достоинства рефрактора и рефлектора. По этой системе устроена одна из моделей школьного телескопа. Тонкое выпукло-вогнутое стекло —
Рис. 6. Двойной рефрактор-астрограф Московского университета для рассматривания и фотографирования небесных светил.
Рис. 7. Схемы хода лучей в телескопах: а — рефрактор; б — рефлектор; в — менисковый телескоп. мениск — исправляет искажения, даваемые большим сферическим зеркалом. Лучи, отразившиеся от зеркала, отражаются затем от посеребренной площадки на внутренней поверхности мениска и идут в окуляр (рис. 7, в), являющийся усовершенствованной лупой. Существуют и другие телескопические системы В телескопе получается перевернутое изображение, но это не имеет никакого значения при наблюдении космических объектов. При наблюдениях в телескоп редко используются увеличения свыше 500 раз. Причина этого — воздушные течения, вызывающие искажения изображения, которые тем заметнее, чем больше увеличение телескопа. Самый большой рефрактор имеет объектив диаметром около 1 м. Наибольший в мире рефлектор с диаметром вогнутого зеркала 6 м изготовлен в СССР и установлен в горах Кавказа. Он позволяет фотографировать звезды в 107 раз более слабые, чем видимые невооруженным глазом.
|
1 |
Оглавление
|