Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.1. Моделирование марковских случайных процессовСлучайная величина позволяет представить поведение изменяющегося случайным образом сигнала в определенный момент времени. Однако при проектировании целого ряда систем связи важно учитывать изменение случайных сигналов не только по уровню, но и во времени. В качестве моделей случайных сигналов и помех, позволяющих отразить их динамические характеристики, используются случайные процессы (СП), представляющие собой случайные функции времени. При этом конкретный вид, который принимает СП в отдельном эксперименте, называется реализацией СП [4, 6].
Во многих радиотехнических
приложениях СВ Простейшее вероятностное описание СП
соответствует независимым СВ
Математические трудности применения
этой формулы для вероятностных расчетов быстро нарастают с увеличением
Это равенство означает, что условная
ПРВ и, следовательно, любые другие вероятностные характеристики СП для момента
времени В более общем случае
рассматриваются
Моделирование Другим обобщением одномерных марковских процессов
являются одномерные марковские процессы Выше шла речь о моделировании марковских процессов общего вида: на характеристики процессов не накладывалось других ограничений, кроме указанных выше. Распространенными являются марковские процессы, которые удовлетворяют дополнительным условиям, чаще всего, условию нормальности распределения, стационарности (однородности), а также условию нормальности и стационарности одновременно. В этих случаях моделирование марковских процессов упрощается. Действительно, у стационарных марковских СП ПРВ перехода вида
зависит лишь от разности Как уже отмечалось, наиболее полное описание стационарных СП дает многомерная ПРВ. Однако этот подход требует большого количества информации. Для описания негауссовских СП используются различные преобразования гауссовских процессов и марковские процессы. Реальные СП можно с требуемой точностью аппроксимировать многомерными марковскими процессами [44]. Действительно [1, 38], любой СП, спектральная плотность которого является дробно-рациональной функцией частоты, является компонентой многомерного марковского процесса.
|
1 |
Оглавление
|