Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
3.4.1. ПРОВЕРКА МОДЕЛИ ЦВЕТОВОГО ЗРЕНИЯ
Прежде чем продолжить изучение процесса
уравнивания цветов, полезно проверить, согласуются ли результаты экспериментов
и аксиомы уравнивания цветов с моделью цветового зрения, рассмотренной в разд.
2.5. В этой модели реакции рецепторов трех типов со спектральными
чувствительностями
,
,
представлялись следующими величинами:
, (3.4.6а)
, (3.4.6б)
. (3.4.6в)
Если наблюдатель видит эквивалентную
смесь первичных цветов, а не исходный цвет
, то замена спектральной плотности
эквивалентной
спектральной плотностью, определяемой соотношением (3.4.4), не должна приводить
к изменению сигналов колбочек
. Следовательно,
, (3.4.7а)
, (3.4.7б)
. (3.4.7в)
Определив
коэффициенты
, (3.4.8)
можно
переписать соотношения (3.4.7) более компактно в матричной форме
(3.4.9)
или
еще короче как
. (3.4.10)
Векторы
и матрицы, входящие в это соотношение, определены выражениями (3.4.7)-(3.4.9).
Следует отметить, что для заданного набора основных цветов и опорного белого
цвета элементы матриц
и
оказываются постоянными величинами.
Поэтому если известны сигналы колбочек
для данного цвета
, то при условии, что
существует матрица
соответствующие координаты цвета
могут быть
вычислены по формуле
. (3.4.11)
Таким
образом, при подходящем выборе величин
любой цвет
может быть заменен
эквивалентной смесью основных цветов; при этом сигналы колбочек останутся
неизменными. К сожалению, эти сигналы трудно измерить, поэтому соотношение
(3.4.11) нельзя применить для непосредственного вычисления координат цвета. Но
это и не было целью приведенного вывода. Наоборот, соотношение (3.4.11)
выведено для того, чтобы показать согласованность результатов экспериментов по
уравниванию цветов с моделью цветового зрения.