Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7.5. ЗВУКОИЗОЛЯЦИЯ ПОМЕЩЕНИЙЗвукоизоляция помещений определяет уровень проникающих извне шумов. Для студий, измерительных камер, сурдокамер и т. п. требуется высокая звукоизоляция от внешних шумов и вибраций, создающих акустические шумы. Звукоизоляция требуется и для концертных залов, театров, аудиторий, комнат для прослушивания и, наконец, жилых помещений. Рассмотрим наиболее характерный случай: проникновение шумов из одного помещения в другое через разделяющую их перегородку. При падении звуковых волн с интенсивностью
или звукоизоляцией перегородки в децибелах:
где Звуковые колебания, проникая в помещение, претерпевают отражения от его внутренних поверхностей, поэтому в нем увеличивается интенсивность звука. Можно считать, что произведение интенсивности звука
В таком случае плотность энергии в помещении для этих колебаний (7.3)
где
Так как согласно
Из этого выражения следует, что величина Разность между уровнями звука с внешней стороны ограждающей конструкции помещения
Здесь
Таким образом, получили, что звукоизоляция помещения определяется звукопроводностью ограждающих конструкций (7.22а) и поправкой
где отношением общего поглощения помещения к проводимости перегородки. Полагая независимым прохождение звуковых волн через сложную перегородку, состоящую из ряда участков с разной их звукопроводностью, можно считать, что общая мощность прошедших звуковых колебаний будет равна сумме потоков энергии через каждый из участков перегородки:
где Аналогично предыдущему случаю (7.26) получаем для сложной перегородки, что звукоизоляция помещения
т. е. определяется отношением общего поглощения помещения к общей проводимости сложной перегородки:
Пути прохождения звука через ограждающие конструкции следующие: через сквозные поры, щели и т. п. (воздушный перенос), через материал перегородки в виде продольных колебаний его частиц (материальный перенос) и через поперечные колебания перегородок, похожих на колебания мембран (мембранный перенос), которые часто можно приближенно рассматривать как колебания всей перегородки в целом. Резонансная частота такой колебательной системы очень низкая, поэтому в звуковом диапазоне частот перегородку можно рассматривать как инерционное сопротивление, определяемое всей ее массой. Коэффициент звукопроводности обратно пропорционален этой массе. Таким образом, при мембранном переносе хорошо проходят через перегородку звуковые колебания низких частот. С увеличением частоты проводимость перегородки уменьшается пропорционально частоте. При материальном переносе проводимость перегородки определяется отношением удельных акустических сопротивлений воздуха и материала перегородки, которые почти не зависят от частоты, поэтому и проводимость практически не будет зависеть от частоты. Воздушный перенос определяется размерами пор (щелей и т. п.), их распределением по поверхности перегородки и трением воздуха о стенки пор. Если имеются одна или несколько щелей, удаленных друг от друга на расстояние не меньше длины звуковой волны в воздухе, то из-за дифракции звуковые волны, падающие на соседние с щелью участки перегородки на расстоянии от нее не более половины длины волны, будут частично также уходить в щели. Проводимость перегородки в этом случае будет значительно больше на низких частотах, чем на высоких. С увеличением частоты растут потери на трение в порах. Это также уменьшает проводимость, поэтому интенсивность звуковых колебаний, проникающих через перегородку, с увеличением частоты также падает. Если поры расположены часто, но имеют такую же общую площадь, как и в первом случае, то частотная зависимость проводимости перегородки будет проявляться в меньшей степени и только из-за потерь на трение в порах. Количественное определение звукопроводности перегородок проводится с учетом всех видов переноса звуковых колебаний. Соответствующие данные приведены в табл. 7.2. Таблица 7.2 (см. скан) Для уменьшения воздушного переноса необходимо тщательно следить за устранением различного рода отверстий и щелей в перегородках. Рассмотрим такой пример. Имеется кирпичная стена толщиной 20 см, ее звукоизоляция составляет Для уменьшения материального переноса необходимо брать слоистые конструкции стен и перегородок из материалов с резко отличающимся удельным акустическим сопротивлением (бетон
|
1 |
Оглавление
|