Главная > Фейнмановские лекции по физике. Т.6. Электродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 6. Стабилизирующие поля ускорителей

Магнитные поля используются в высокоэнергетических ускорителях еще для того, чтобы заставить частицу двигаться по нужной траектории. Такие устройства, как циклотрон и синхротрон, ускоряют частицу до высоких энергий, заставляя ее многократно проходить через сильное электрическое поле. А на своей орбите частицу удерживает магнитное поле.

Мы видели, что путь частицы в однородном магнитном поле проходит по круговой орбите. Но это справедливо только для идеального магнитного поля. А представьте себе, что поле  в большой области только приблизительно однородно: в одной части оно немного сильнее, чем в другой. Если в такое поле мы запустим частицу с импульсом , то она полетит по примерно круговой орбите с радиусом . Однако в области более сильного поля радиус кривизны будет несколько меньше. При этом орбита уже не будет замкнутой окружностью, а возникнет «дрейф», подобный изображенному на фиг. 29.10. Если угодно, можно считать, что небольшая «ошибка» в поле приводит к толчку, который сдвигает частицу на новую траекторию. В ускорителе же частица делает миллионы оборотов, поэтому необходима своего рода «радиальная фокусировка», которая удерживала бы траектории частиц на близкой к желаемой орбите.

333.gif

Фиг. 29.10. Движение частицы в слабо неоднородном поле.

Другая трудность, связанная с однородным полем, состоит в том, что частицы не остаются в одной плоскости. Если они начинают движение под небольшим углом или небольшой угол создается неточностью поля, то частицы идут по спиральному пути, который в конце концов приведет их либо на полюс магнита, либо на потолок или пол вакуумной камеры. Чтобы избежать такого вертикального дрейфа, нужны какие-то устройства; магнитное поле должно обеспечивать как радиальную, так и «вертикальную» фокусировки.

Сразу же можно догадаться, что радиальную фокусировку обеспечивает созданное магнитное поле, которое увеличивается с ростом расстояния от центра проектируемого пути. Тогда, если частица выйдет на больший радиус, она окажется в более сильном поле, которое вернет ее назад на нужную орбиту. Если она перейдет на меньший радиус, то «загибание» будет меньше и она снова вернется назад на желаемый радиус. Если частица внезапно начала двигаться под углом к идеальной орбите, она начнет осциллировать относительно нее (фиг. 29.11,а) и радиальная фокусировка будет удерживать частицу вблизи кругового пути.

334.gif

Фиг. 29.11. Радиальное движение частицы в магнитном поле.

а - с большим положительным «наклоном»; б - с малым отрицательным «наклоном»; в - с большим отрицательным «наклоном».

Фактически радиальная фокусировка происходит даже при противоположном «наклоне». Это может происходить в тех случаях, когда радиус кривизны траектории увеличивается не быстрее, чем расстояние частицы от центра поля. Орбиты частиц будут подобны изображенным на фиг. 29.11,б. Но если градиент поля слишком велик, то частицы не вернутся на желаемый радиус, а будут по спирали выходить из поля либо внутрь, либо наружу (фиг. 29.11,в).

«Наклон» поля мы обычно характеризуем «относительным градиентом», или индексом поля

.                  (29.2)

Направляющее поле создает радиальную фокусировку, если относительный градиент будет больше -1.

Радиальный градиент поля приведет также к вертикальным силам, действующим на частицу. Предположим, мы имеем поле, которое вблизи центра орбиты сильнее, а снаружи слабее. Вертикальное поперечное сечение магнита под прямым углом к орбите может иметь такой вид, как показано на фиг. 29.12. (Причем протоны летят на нас из страницы.) Если нам нужно, чтобы поле было сильнее слева и слабее справа, то магнитные силовые линии должны быть искривлены подобно изображенным на рисунке. То, что это должно быть так, можно увидеть из закона равенства нулю циркуляции  в пустом пространстве. Если выбрать систему координат, показанную на рисунке, то

,

или

.                (29.3)

Поскольку мы предполагаем, что  отрицательно, то равным ему и отрицательным должно быть и . Если «номинальной» плоскостью орбиты является плоскость симметрии, где , то радиальная компонента  будет отрицательной над плоскостью и положительной под ней. При этом линии должны быть искривлены так, как это изображено на рисунке.

336.gif

Фиг. 29.12. Вертикальное фокусирующее поле.

Такое поле должно обладать вертикально фокусирующими свойствами. Представьте себе протон, летящий более или менее параллельно центральной орбите, но выше нее. Горизонтальная компонента  будет действовать на протон с силой, направленной вниз. Если же протон находится ниже центральной орбиты, то сила изменит свое направление. Таким образом, возникает эффективная «восстанавливающая сила», направленная к центру орбиты. Из наших рассуждений получается, что при условии уменьшения вертикального поля с увеличением радиуса должна происходить вертикальная фокусировка. Однако если градиент поля положительный, то происходит «вертикальная дефокусировка». Таким образом, для вертикальной фокусировки индекс поля  должен быть меньше нуля. Выше мы нашли, что для радиальной фокусировки значение  должно быть больше -1. Комбинация этих двух условий требует для удержания частиц на стабильных орбитах, чтобы

.

В циклотронах обычно используется величина , приблизительно равная нулю, а в бетатронах и синхротронах типичной величиной является .

 

1
Оглавление
email@scask.ru