Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.2. Эквивалентность состоянийВ дальнейшем будем применять обозначение Определение 3.1. Говорят, что состояние Таким образом, Эквивалентность В некоторых случаях эквивалентность или различимость двух состояний одного и того же автомата могут быть установлены исследованием таблицы переходов данного автомата, Некоторые из этих случаев описываются с помощью следующих трех лемм. Лемма 3.1. Пусть Доказательство. Очевидно, существует по крайней мере один входной символ, при приложении которого к Лемма 3.2. Пусть Доказательство. При приложении к Лемма 3.3. Пусть Доказательство. При приложении любого входного символа к Пары строк, обладающие свойством, приведенным в лем указанными в леммах 3.2 и 3.3, называются явно эквивалентными, а состояния, стоящие в основном столбце в этих строках,-явно эквивалентными состояниями. Таким образом, имеем: Теорема 3.1. Если состояния Следует отметить, что утверждение, обратное теореме 3.1, несправедливо, т. е. не каждая пара различимых состояний является явно различимой и не каждая пара эквивалентных состояний явно эквивалентной. Используя определения, введенные в § 2.3, можно заключить, что в явно минимальном автомате все пары состояний различимы, а в явно сократимом автомате имеется по крайней мере одна пара эквивалентных состояний.
Рис. 3.1. Автомат Для иллюстрации лемм Из таблицы переходов видно, что строки 1 и 5 одинаковы, а строки 2 и 6 становятся одинаковыми, если каждую цифру 2 заменить на цифру 6 (или каждую цифру 6 заменить на цифру 2). Следовательно, состояния в парах {1,5} И {2, 6} являются эквивалентными. Рассмотрение подтаблицы Таблица 3.1. Автомат
лицы
|
1 |
Оглавление
|