Главная > Введение в теорию конечных автоматов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.5. Граф переходов

Граф переходов представляет собой структуру, состоящую из вершин, изображаемых в виде малых кружков, и ориентированных дуг, изображаемых в виде линий между парами вершин и снабженных стрелками, указывающими направление от одной вершины к другой. Граф переходов, описывающий автомат с состояниями, содержит вершин, причем каждая вершина соответствует одному состоянию автомата; состояние, изображаемое вершиной, снабжается обозначением, соответствующим этому состоянию. Ориентированные дуги проводятся и обозначаются по следующему правилу. Пусть представляет собой множество значений для которых и пусть Если не пустое) множество, то дуга проводится из вершины в вершину , стрелка указывает направление из и обозначение дуги записывается в виде

Каждый, член вида содержащийся в обозначении дуги, называется парой вход - выход. Изложенное правило построения графа переходов автомата иллюстрируется рис. 2.1. Это правило устанавливает взаимно однозначное соответствие между графом переходов и таблицей переходов для одного и того же автомата, так что, зная одно представление, всегда можно получить другое. Для примера на рис. 2.2 изображен граф переходов автомата построенный по таблице 2.2.

Рис. 2.1. Обозначение дуги.

Рис. 2.2. Автомат

По построению графа дуга, направленная из вершины к вершине обозначается входными символами, которые вызывают переход автомата из состояния и выходными символами, которые выдаются автоматом при этом переходе. Для детерминированного, без ограничений на входе

автомата каждый входной сигнал вызывает переход из каждого состояния только в одно другое состояние; следовательно, дуги, выходящие из любой данной вершины, содержат полное число p пар вход - выход, где p — мощность входного алфавита. Непосредственное преимущество графа переходов состоит в том, что он облегчает определение реакции автомата на входную последовательность любой длины. При данном начальном состоянии автомата М и входной последовательности реакция М легко определяется прослеживанием (в направлении стрелок) непрерывной последовательности дуг, которая начинается в вершине дуга которой соответствует паре вход - выход Выходная последовательность, которую выдает автомат М при подаче на него входной последовательности тогда будет состояние, в которое при этом переходит М, определяется по обозначению вершины, в которой заканчивается последовательность из дуг. Например, реакция автомата на входную последовательность при начальном состоянии 3 легко определяется по рис. 2.2 и будет 0000001. Последовательность состояний при этом будет 1, 3, 4, 4, 4, 5 и 1.

Роль графа переходов в теории конечных автоматов подобна роли, которую играет графическое изображение схемы в теории электрических цепей. Граф переходов преобразует абстрактную модель в физическое изображение, усиливающее интуицию исследователя, и дает возможность ему «отчетливо представить» различные процессы и свойства, которые без такого изображения остались бы рядом сухих математических фактов. Как и в теории цепей, граф переходов удобно рассматривать как модель саму по себе, а символы, используемые в графе, — как абстрактные компоненты модели. Поэтому часто в дальнейшем мы будем граф, представляющий автомат М, называть «автоматом Ж», вершину, представляющую состояние — «состоянием и, наоборот, отождествлять абстрактные понятия с их геометрическими представлениями, имеющимися в графе переходов.

Понятие изоморфизма конечных автоматов, введенное в § 2.4, в терминах графов переходов допускает очень

простую интерпретацию: автоматы изоморфны один другому, если они имеют одинаковые графы, отличающиеся, быть может, только обозначением вершин. Таким образом, для того чтобы автомат М заменить изоморфным ему автоматом, надо просто изменить обозначение одной или нескольких вершин. Аналогично, чтобы получить семейство перестановок автомата М, достаточно переставить обозначения вершин всеми возможными способами.

1
Оглавление
email@scask.ru