Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7.2. Совместимость состоянийПри определении основной модели с конечным числом состояний (см. § 1.6) молчаливо предполагалось, что характеристические функции Состояния последовательность. Состояния
Рис. 7.1. Автомат Видно, что совместимость обладает свойствами рефлексивности и симметричности, но не обладает свойством транзитивности, так как последовательности, допустимые для Таблица 7.1. Автомат
Совместимость поэтому нельзя понимать как обычное отношение эквивалентности, а следует относить только к парам состояний. Следует заметить, что определение совместимых пар состояний совпадает с определением эквивалентных пар состояний, если на входные последовательности рассматриваемого автомата не накладываются никакие ограничения. Таким образом, определение совместимости пар состояний может быть получено из определения эквивалентности пар состояний, если в последнем (см. определение 3.1) выражение «любой входной последовательности» заменить выражением «любой входной последовательности, допустимой для обоих состояний» (это изменение не отразится на правильности определения 3.1, так как в автомате без ограничений на входе множество допустимых последовательностей составляет множество всех последовательностей). Поэтому определение пары совместимых состояний производится так же, как определение пары эквивалентных состояний, с той лишь разницей, что все последовательности, недопустимые для обоих состояний пары, не учитываются. В § 3.7 был описан метод, названный методом таблицы пар, для определения всех эквивалентных пар состояний в данном автомате. В соответствии с приведенными замечаниями этот метод может быть использован для определения всех совместимых пар состояний при условии, что первый вариант таблицы пар видоизменяется следующим образом: (1) элементы в столбце пар представляют собой пары состояний, при которых выдается один и тот же выходной символ при подаче любого входного символа, допустимого для обоих состояний пары; (2) если входной символ Таблица 7.2. Таблица пар для автомата
пустой (или заполняется прочерком). Тогда построение последующих вариантов таблиц пар состояний может быть выполнено таким же образом, как это описано в § 3.7. Не выделенные жирным шрифтом элементы столбца пар в конечном варианте таблицы пар представляют все совместимые пары состояний для данного автомата. Например, таблица 7.2 представляет конечный вариант таблицы пар для автомата
|
1 |
Оглавление
|