Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.1. Требования, предъявляемые к преобразованиямИтак, у кодирования с преобразованием есть много общего с субполосным кодированием. Какое преобразование выбирать и по какому критерию, зависит от конкретной задачи. Рассмотрим свойства, которые являются важными при кодировании изображений. 1. Масштаб и ориентация. Для эффективного представления изображения важную роль играет масштаб. В изображениях имеются объекты самых различных размеров. Поэтому, преобразование должно позволять анализировать изображение одновременно (и независимо) на различных масштабах. В главе 2, изучая теорию вейвлетов, мы будем говорить о кратномасштабном анализе. В частотной области это эквивалентно логарифмической шкале. Для двумерного сигнала некоторая спектральная область соответствует определенному масштабу и ориентации. Ориентация базисных функций определяет способность преобразования корректно анализировать ориентированные структуры, типичные для изображений. Примером могут служить контуры и линии. Таким образом, для решения задачи анализа желательно иметь преобразование, которое бы делило входной сигнал на локальные частотные области. 2. Пространственная локализация. Кроме частотной локализации, базисные функции должны быть локальными и в пространстве. Необходимость в пространственной локализации преобразования возникает тогда, когда информация о местоположении деталей изображения является важнейшей. Эта локальность, однако, не должна быть «абсолютной», блочной, как при ДКП, так как это ведет к потере свойства локальности в частотной области. Наиболее часто применяемый подход при анализе заключается в следующем: сигнал дискретизируется, затем выполняется ДПФ. Что же получается в результате? Сначала сигнал раскладывается по базису единичного импульса, который не имеет частотной локальности, а затем по базису синусоид с четными и нечетными фазами, не имеющих пространственной локальности. Конечно, представление сигнала в частотной области исключительно важно для его анализа. Однако это не означает, что выбор функций импульса и синусоиды для решения этой задачи является наилучшим. Еще в 1946 году Д.Габор предложил класс линейных преобразований, которые обеспечивают локальность и в частотной, и во временной области. Базис единичного импульса и базис синусоиды могут рассматриваться как два экстремальных случая этих преобразований. Функции Габора будут рассмотрены в разделе 1.3. Вейвлеты являются еще одним примером функций, хорошо локализованных в пространственной и частотной областях. 3. Ортогональность. Вообще говоря, преобразование не обязательно должно быть ортогональным. Так, ортогональность обычно не рассматривается в контексте субпо-лосного кодирования, хотя вейвлет-преобразование, как правило, является ортогональным. Ортогональность функций упрощает многие вычисления. Кроме того, как будет показано, «сильно» неортогональное преобразование может быть неприемлемо для кодирования. 4. Быстрые алгоритмы вычисления. Это, наверное, наиболее важное свойство. Так как невозможность практической реализации преобразования в реальном масштабе времени сводит на нет все его положительные свойства.
|
1 |
Оглавление
|