(см. скан)
Рис. 1.2. Неравномерный каскадный банк фильтров анализа - синтеза
Рис. 1.3. Октавополосное разбиение частотного плана четырехуровневой пирамиды, построенной на основе двухканальной системы А-С
Если первоначальная система А-С обладала свойством полного восстановления, то и получившаяся двухкаскадная система также будет обладать этим свойством. Если дальнейшему разложению подвергается каждый промежуточный сигнал, то такая система называется равномерной системой.
В противном случае мы имеем дело с неравномерной, или пирамидальной системой, как показано на рис. 1.2. В разделе 1.3 будут обсуждаться пирамидальные системы, построенные на основе двухканальных систем А-С. Такое каскадирование приводит к октавополосному разбиению частотного плана, как показано на идеализированной частотной диаграмме (см. рис.1.3). Здесь на верхней диаграмме показано разбиение частотного плана двухканальной системой А-С. Следующие диаграммы демонстрируют последовательное повторение применения той же системы к низкочастотной части сигнала.
Таким образом, нижняя диаграмма соответствует четырехуровневому разбиению частотной области. Как будет показано в дальнейшем, такие системы лежат в основе быстрого алгоритма вычисления вейвлет-преобразования.