Главная > Дискретное программирование
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА 10. МЕТОД ВЕТВЕЙ И ГРАНИЦ

Впервые метод ветвей и границ был предложен в 1960 г. в работе Лэнд и Дойг [109] применительно к задаче целочисленного линейного программирования. Однако эта работа не оказала заметного непосредственного влияния на развитие дискретного программирования. Фактически «второе рождение» метода ветвей и границ связано с работой Литтла, Мурти, Суини и Кэрел [113], посвященной задаче коммивояжера; в этой же работе было впервые предложено и общепринятое теперь название метода «метод ветвей и границ». Начиная с этого момента появляется весьма большое число работ, посвященных методу ветвей и границ и различным его модификациям. Столь большой успех (да еще применительно к «классически трудной» задаче о коммивояжере) объясняется тем, что Литтл, Мурти, Суини и Кэрел первыми обратили внимание на широту возможностей метода ветвей и границ, отметили важность использования специфики задачи и сами весьма удачно этой спецификой воспользовались.

В § 1 настоящей главы излагается общая идея метода ветвей и границ; в § 2 — алгоритм Лэнд и Дойг для задачи целочисленного линейного программирования, в § 3 — метод Литтла и др. авторов для задачи коммивояжера.

§ 1. Идея метода ветвей и границ

1.1. Рассмотрим задачу дискретного программирования в следующей общей форме.

Минимизировать

при условии

Здесь G - некоторое конечное множество.

1.2. В основе метода ветвей и границ лежат следующие построения, позволяющие в ряде случаев существенно уменьшить объем перебора.

I. Вычисление нижней границы (оценки).

Рис. 10.1.1.

Часто удается найти нижнюю границу (оценку) целевой функции на множестве планов (или на некотором его подмножестве т. е. такое число что для имеет место

(соответственно для имеет место Разбиение на подмножества (ветвление). Реализация метода связана с постепенным разбиением множества планов на дерево подмножеств (ветвлением). Ветвление происходит по следующей многошаговой схеме.

0-й шаг. Имеется множество Некоторым способом оно разбивается на конечное число (обычно не пересекающихся) подмножестве шаг Имеются множества , еще не подвергавгпиеся ветвлению. По некоторому правилу (указанному ниже) среди них выбирается множество и разбивается на конечное число подмножеств:

Еще не подвергавшиеся разбиению множества

заново обозначаются через

Несколько шагов такого процесса последовательного разбиения схематически изображены на рис. 10.1.1.

III. Пересчет оценок. Если множество то, очевидно,

Поэтому, разбивая в процессе решения некоторое множество на подмножества

всегда будем считать, что оценка (граница) для любого подмножества не меньше оценки для множества

В конкретных ситуациях часто оказывается возможным добиться улучшения оценки, т. е. получить хотя бы для некоторых строгое неравенство

IV. Вычисление планов. Для конкретных задач могут быть указаны различные способы нахождения планов в последовательно разветвляемых подмножествах. Любой такой способ существенно опирается на специфику задачи.

V. Признак оптимальности. Пусть

и план X принадлежит некоторому подмножеству Если при этом

то X — оптимальный план задачи (1.1) — (1.2).

Доказательство непосредственно следует из определения оценки.

Обычно этот признак применяется на некотором этапе ветвления (т. е., говоря формально, при ; см. п. II).

VI. Оценка точности приближенного решения. Пусть

Если X — некоторый план исходной задачи (т. е. ), то

Доказательство и здесь сразу следует из определения оценки.

Очевидно, что если разность невелика (т. е. не превышает некоторого выбранного для данной задачи числа), то X можно принять за приближенное решение, за оценку точности приближения.

1.3. Изложим формальную схему метода ветвей и границ.

0-й шаг. Вычисляем оценку . Если при этом удается найти такой план X, что

то X — оптимальный план.

Если оптимальный план не найден, то по некоторому способу разбиваем множество на конечное число подмножеств

и переходим к шагу.

1-й шаг. Вычисляем оценки Если при этом удается найти такой план X, что для некоторого и

то X — оптимальный план.

Если же оптимальный план не найден, то выбираем «наиболее перспективное» для дальнейшего разбиения множество по следующему правилу:

Разбиваем множество на несколько (обычно не пересекающихся) подмножеств:

Еще не подвергавшиеся разбиению множества

заново обозначим через

и переходим ко шагу.

k-й шаг Вычисляем оценки Если при этом удается найти такой план что для некоторого и

то оптимальный план.

Если же оптимальный план не найден, то снова выбираем наиболее перспективное множество по правилу

Разбиваем на несколько непересекающихся подмножеств:

Еще не подвергавшиеся разбиению множества

заново обозначаем через

и переходим к шагу.

1.4. Для реализации описанной выше схемы метода ветвей и границ применительно к отдельным задачам дискретного программирования необходимо лишь, исходя из особенностей этих задач, конкретизировать правила ветвления, вычисления оценок (границ) и нахождения планов. В следующих двух параграфах это будет проделано для частично целочисленной задачи линейного программирования (метод Лэнд и Дойг) и для задачи о коммивояжере (метод Литтла и др.). Общая же схема метода ветвей и границ при этом воспроизводиться не будет.

1
Оглавление
email@scask.ru