Главная > ПРЕДЫСТОРИЯ АНАЛИТИЧЕСКОЙ МЕХАНИКИ (В. И. Яковлев)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Так как уже было много трактатов по баллистике, я надеюсь, что изложение всего этого искусства на одной странице, содержащей, как я осмелюсь утверждать, все имеющееся в более толстых трактатах, не вызовет особого раздражения; и содержащей все более простым образом и более удобно для использования, чем геометрические построения, зависящие от свойств окружности и параболы.
I. Пусть скорость 2 снаряда будет равна той, которую он приобрел бы, падая с высоты CA, т.е. =a,AQ=s,QM=z; для снаряда, вылетающего в направлении AG будет t.2z::az, или tt= =4az.3 Для отнесения этой параболы к горизонтальной линии AH, образующей с AG угол, тангенс которого, при луче равном 1 , равен n; пусть AP=x,PM=y,PQ=nx; имєем QM=PQPM(z=nxy)
1 [247]. Эта небольшая статья 1731 года хорошо характеризует научный почерк Мопертюи.
2 Речь идет о начальной скорости снаряда в точке A.
3 B современных обозначениях t/2z=ajz;t2=4az.

и AQ2=AP2+PQ2(tt=xx+nnxx). И исключая z и t из первого Уравнения tt=4az, получаем (nn1)xx=4nax4ay.
II. Для поражения данным весом пороха (зарядом — В.Я.) заданной точки E.

Пусть AD=b,ED=c; необходимо, чтобы когда x станет b,y стало c; таким образом, (nn+1)bb=4nab4ac. Откуда получаем направление ствола (пушки) n=2ab±1b4aa4acbb. Откуда видно, что для поражения E данным зарядом существуют два положения ствола.

След. 1. Чтобы n было возможно, необходимо, чтобы 4aa= или > >4ac+bb.
След. 2. Если E на горизонтсли, имеем n=2ab±1b4aabb.
III. Для поражения точки E в данном направлении.
Имеем: a=nn+14nb4cbb. Что определяет заряд.
След. Этим показано, что при неизменном положении пушки горизонтальная дальность полета пэопорциональна линии CA, взятой в качестве силы бросания. Так как c стало =0, имеем b=4nnn+1a.
IV. Для нахождения направления наибольшей дальности бросания.

Имеем: AB=x=4nnn+1a должна быть максимальной. Дифференцируя эту величину или просто nnn+1 и приравнивая нулю, находим n=1. Откуда видно, что полупрямой угол дает наибольшую возможную горизонтальную дальность.
V. Для определения наименьшего заряда, который может поразить E.

Имеем: a=nn+14nb4cbb должна быть минимальной. Дифференцируя это количество, считая n переменной, или просто дифференцируя nn+1nbc, получаем n=cb±1bbb+cc; подставляя положительное значение n в a=nn+14nb4cbb, находим a=12c+12bb+cc.

1
Оглавление
email@scask.ru