6.13 Элементы схемы, работающие на постоянном токе
Конденсатор фильтра. Конденсатор фильтра выбирается достаточно большой емкости для уменьшения пульсаций до приемлемой величины и рассчитывается на достаточное напряжение, чтобы выдержать худший вариант - отсутствие нагрузки и максимальное напряжение сети. Для схемы на рис. 6.17 пульсации составят 1,5 В (двойное ампл. значение) при полной нагрузке. Из опыта проектирования можно рекомендовать использование электролитических конденсаторов, подобных тем, которые используются в ЭВМ (они выпускаются в виде цилиндров с резьбовым выводом с одной стороны), например типа Sprague
. На небольшие значения емкостей большинство изготовителей выпускают конденсаторы такого же качества в варианте с осевыми выводами (по одному проводнику торчит с каждого конца), например типа Sprague
. Помните о большом допуске значений емкости!
Здесь полезно вернуться к разд. 1.27, где впервые обсуждался вопрос о пульсациях. Всегда, кроме случая импульсных стабилизаторов (разд. 6.19 и следующие), можно прикинуть напряжение пульсаций, считая выходной ток постоянным и равным максимальному току нагрузки. Действительно, вход подключенного к схеме стабилизатора потребляет постоянный ток. Это упрощает расчеты, поскольку разряд конденсатора происходит по линейному закону и не надо возиться с постоянными времени или экспонентами (рис. 6.18).
Рис. 6.18.
Например, вы хотите выбрать конденсатор фильтра для нестабилизированной части источника питания
В, 1 А, и предположим, что уже выбрали трансформатор с эффективным значением напряжения вторичной обмотки 10 В, обеспечивающий после выпрямителя 12 В постоянного тока на пике пульсации при полном токе нагрузки.
«Гасящий» резистор с СИД, установленные параллельно выходу на схеме рис. 6.17, разряжают конденсатор за несколько секунд в условиях отсутствия нагрузки. Это полезно, так как, если конденсатор источника питания остается заряженным после того как источник выключен, можно легко повредить какие-нибудь схемные элементы, ошибочно считая, что напряжения в схеме нет.
Выпрямители.
Прежде всего следует отметить, что диоды, применяемые в источниках питания, это совсем не то, что малосигнальные диоды

, применяемые в схемотехнике. Сигнальные диоды рассчитаны на высокое быстродействие (несколько наносекунд), малые токи утечки (несколько наноампер) и малую емкость (несколько пикофарад); они могут выдерживать ток до

, а напряжение пробоя редко превосходит 100 В. Выпрямительные диоды и мосты, предназначенные для работы в источниках питания, выдерживают ток от 1 до 25 А и более, а напряжение пробоя их - от 100 до 1000 В. У них сравнительно большие токи утечки (от микроампер до миллиампер) и довольно большая емкость переходов. Они не предназначены для высоких скоростей переключения. Перечень ряда широко применяемых типов выпрямителей приведен в табл. 6.4.
Типичными представителями выпрямителей являются устройства серии
, рассчитанные на ток 1 А, с напряжением обратного пробоя от 50 до 1000 В. Серия
рассчитана на 3 А, что является почти наивыспшм возможным значением тока для элемента в герметичном корпусе с выводами под печатный монтаж (охлаждение за счет теплопроводности выводов). Популярная серия
-типичные сильноточные, оснащенные штыревыми выводами выпрямители, с расчетным током 40 А и напряжением пробоя до 600 В. Популярны и мостовые выпрямители в пластиковых корпусах, монтируемые на печатных платах, с расчетным током 1 и 2 А и монтируемые на шасси, рассчитанные на 25 А и более. Для тех применений, где важно высокое быстродействие (например, преобразователи постоянного тока, см. разд. 6.19), используются диоды с быстрым восстановлением, например одноамперные диоды серии
. В низковольтных схемах может оказаться желательным использование диодов Шоттки, например серии
с прямым падением напряжения менее 0,4 В при токе 5 А.