Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.18. Частотный анализ реактивных схемДля начала рассмотрим конденсатор, на который подается синусоидальное напряжение источника питания (рис. 1.47). Ток в схеме определяется следующим образом:
Из этого уравнения следует, что ток имеет амплитуду 7 и опережает входное напряжение по фазе на 90°. Если не принимать во внимание соотношение фаз, то
Рис. 1.47.
Рис. 1.48. (Напомним, что Замечание: сейчас нам необходимо воспользоваться комплексными переменными; при желании вы можете пропустить математические выкладки, приводимые в последующих разделах, и принять на веру полученные результаты (они выделены в тексте). Не думайте, что подробные алгебраические преобразования, приводимые в этих разделах, необходимы для понимания всего остального материала книги. Это не так - глубокое знание математики похвально, но совсем не обязательно. Следующий раздел, пожалуй, наиболее труден для тех, у кого нет достаточной математической подготовки. Но пусть это вас не огорчает. Определение напряжения и тока с помощью комплексных чисел.Только что вы убедились в том, что в цепи переменного тока, работающей с синусоидальным сигналом некоторой частоты, возможен сдвиг по фазе между напряжением и током. Тем не менее если схема содержит только линейные элементы (резисторы, конденсаторы, индуктивности), то амплитуда токов на всех участках схемы пропорциональна амплитуде питающего напряжения.В связи с этим можно попытаться найти некоторые общие выражения тока, напряжения и сопротивления и обобщить тем самым закон Конечно, можно определять амплитуды и фазовые сдвиги напряжений и токов явно, например 1. Напряжение и ток представляются комплексными величинами U и I. Напряжение 2. Для того чтобы получить выражение для действующего напряжения и тока, нужно умножить соответствующие комплексные представления на
(В электронике символ j используется вместо принятого в алгебре для комплексной переменной символа
Например, комплексному напряжению
Реактивное сопротивление конденсаторов и индуктивностей.Принятое соглашение позволяет применять закон![]() ![]() ![]()
т. е. для конденсатора
Аналогичные рассуждения для индуктивности дают следующий результат:
Схема, содержащая только конденсаторы и индуктивности, всегда обладает мнимым импедансом; это значит, что напряжение и ток всегда сдвинуты по фазе друг относительно друга на Под реактивным сопротивлением подразумевается при этом только мнимая часть импеданса. Обобщенный закон Ома.Соглашения, принятые для представления напряжений и токов, позволяют записать закон Ома в следующей простой форме:
означающей, что напряжение U, приложенное к схеме с импедансом Z, порождает ток I. Импеданс последовательно и параллельно соединенных элементов определяется по тем же правилам, что и сопротивление последовательно и параллельно соединенных резисторов:
(для последовательного соединения),
(для параллельного соединения). И в заключение приведем формулы для определения импеданса резисторов, конденсаторов и индуктивностей:
Полученные зависимости позволяют анализировать любые схемы переменного тока с помощью методов, принятых для схем постоянного тока, а именно с помощью закона Ома и формул для последовательного и параллельного соединения элементов. Результаты, которые мы получили при анализе таких схем, как, например, делитель напряжения, сохраняют почти такой же вид. Так же как и для схем постоянного тока, для сложных разветвленных схем переменного тока справедливы законы Кирхгофа; отличие состоит в том, что вместо токов I и напряжений U здесь следует использовать их комплексные представления: сумма падений напряжения (комплексного) в замкнутом контуре равна нулю; сумма токов (комплексных), втекающих в узел, равна сумме токов (комплексных), вытекающих из него. Из последнего правила, как и в случае с цепями постоянного тока, вытекает, что ток (комплексный) в последовательной цепи всюду одинаков. Упражнение 1.16. Используя формулы для импеданса параллельного и последовательного соединения элементов, выведите формулы (разд. 1.12) для емкости двух конденсаторов, соединенных (а) параллельно, (б) последовательно. Подсказка: допустим, что в каждом случае конденсаторы имеют емкость и Попробуем воспользоваться рекомендованным методом для анализа простейшей цепи переменного тока, которая состоит из конденсатора, к которому приложено напряжение перменного тока. После этого кратко остановимся на вопросе о мощности в реактивных схемах (это будет последний кирпич в фундаменте наших знаний) и рассмотрим простую, но очень полезную схему Представим себе, что к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц подключен конденсатор емкостью
Иногда этот прием очень полезен. Как ни странно, конденсатор в нашем примере мощность не рассеивает. Его подключение к сети не приводит к увеличению показаний счетчика электроэнергии. Разгадку этой «тайны» вы узнаете, прочитав следующий раздел. А затем мы продолжим анализ схем, содержащих резисторы и конденсаторы, с помощью обобщенного закона Ома.
Рис. 1.49. При использовании синусоидального сигнала ток через конденсатор опережает напряжение по фазе на 90°. Упражнение 1.17. Докажите, что Мощность в реактивных схемах.Мгновенное значение мощности, потребляемой любым элементом схемы, определяется произведением![]() Упражнение 1.18. (дополнительное). Докажите, что схема в среднем за полный период не потребляет мощности, если протекающий через нее ток сдвинут по фазе относительно питающего напряжения на Как определить среднюю потребляемую мощность для произвольной схемы? В общем случае можно просуммировать произведения UI и разделить сумму на длительность истекшего интервала времени. Иными словами.
где
где U и I - эффективные комплексные значения напряжения и тока. Рассмотрим пример. Допустим, что в предыдущей схеме конденсатор питается синусоидальным напряжением, эффективное значение которого равно 1 В. Для простоты будем выполнять все преобразования с эффективными значениями. Итак: А теперь рассмотрим схему, показанную на рис. 1.50. Выполним ряд преобразований:
Рис. 1.50. В третьей строке преобразований при определении тока I мы умножили числитель и знаменатель на комплексное число, сопряженное знаменателю, для того чтобы получить в знаменателе действительное число. Полученная величина меньше, чем произведение амплитуд U и I; ее отношение к этому произведению называют коэффициентом мощности:
Коэффициент мощности - это косинус угла, определяющего сдвиг фаз напряжения и тока, он лежит в диапазоне от 0 (для реактивной схемы) до 1 (для резистивной схемы). Если коэффициент мощности меньше 1, то это значит, что в схеме присутствует реактивный элемент. Упражнение 1.19. Докажите, что вся средняя мощность предыдущей схемы рассеивается на резисторе. Для того, чтобы решить эту задачу, нужно определить величину отношения Коэффициент мощности играет немаловажную роль в распределении больших мощностей, так как реактивные токи не передают нагрузке никакой полезной мощности, зато вызывают нагрев в сопротивлениях проводов генераторов и трансформаторов (температура нагрева пропорциональна Упражнение 1.20. Покажите, что последовательное подключение конденсатора емкостью
Рис. 1.51. Обобщенная схема делителя напряжения: пара электрических цепей с произвольным импедансом. Делители напряжения: обобщение.Простейший делитель напряжения (рис. 1.5) состоит из пары последовательно соединенных резисторов. Входное напряжение измеряется в верхней точке относительно земли, а выходное в точке соединения резисторов относительно земли. От простейшего резистивного делителя перейдем к более общей схеме делителя, если один или оба резистора заменим на конденсатор или индуктивность, как на рис. 1.51 (в более сложной схеме присутствуют и R, и L, и С). Вообще говоря, в таком делителе отношение![]()
Не будем сосредоточивать внимание на полученном результате, рассмотрим лучше некоторые простые, но очень важные примеры.
|
1 |
Оглавление
|