Главная > Искусство схемотехники, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6.24. Источники стабилизированного постоянного тока

В разд. 2.06 и 2.14 мы описали несколько способов стабилизации тока с помощью схем, содержащих управляемые напряжением источники тока с плавающими или заземленными нагрузками и некоторые виды токовых зеркал.

В разд. 3.06 было показано, как использовать полевые транзисторы для построения некоторых простых источников тока на «токостабилизирующих диодах» (затвор транзистора соединен с истоком) таких, как серия . В разд. 4.07 мы показали, как добиться более высоких технических данных (во всяком случае, на низкой частоте), используя для создания источников тока ОУ. В разд. 6.15 мы упомянули удобную ИС трехвыводного источника тока . Вместе с тем часто необходим управляемый источник стабилизир. пост, тока, который мог бы выдавать ток и напряжение значительной величины и выпускался в виде законченного прибора. Здесь мы рассмотрим некоторые успешно применяемые для этих целей схемы.

Трехвыводные стабилизаторы.

В разд. 6.18 мы показали, как можно использовать трехвыводной регулируемый стабилизатор для построения превосходного простого источника тока. Стабилизатор типа 317 поддерживает между выходным выводом и выводом постоянное напряжение 1,25 В (ширина запрещенной зоны); включая резистор между этими выводами, можно получить двухвыводной прибор со стабильным постоянным током (рис. 6.38), используемый для отдачи или отвода тока. Поскольку перепад на самом стабилизаторе составляет около 2 В, характеристики начинают ухудшаться при напряжении на схеме менее 3 В.

Этот тип источника тока удобен для средних и больших токов: имеет максимальный ток 1,5 А и может работать с падением напряжения до 37 В. Ее высоковольтный родственник может выдержать падение 57 В. Выпускаются более сильноточные версии, например, , но они рассчитаны на более низкие напряжения. Трехвыводные стабилизаторы не работают как источники тока при токах ниже , наихудший случай тока покоя. Обратите внимание, однако, что ток не является источником ошибки тока, поскольку он протекает от входного вывода к выходному; гораздо меньший ток, вытекающий по выводу номин.), колеблется в пределах 20% по всему диапазону рабочих температур и им можно пренебречь.

Рис. 6.61. Измерение тока в шине питания.

В давние времена, до появления трехвыводных регулируемых стабилизаторов, иногда использовали в качестве источников тока -вольтовые нерегулируемые стабилизаторы (например, 7805) в похожей схеме (заменяя вывод выводом «земля»). Это плохая схема, потому что при малых выходных токах ток покоя стабилизатора вносит большую ошибку, а при больших токах падение напряжения 5 В на резисторе установки тока приводит к лишнему рассеянию мощности.

Измерение тока в шине питания.

Простая схема с хорошими параметрами получается из традиционного последовательного проходного стабилизатора со съемом тока на входе проходного транзистора (рис. 6.61). -резистор для съема тока, желательно с малой температурной зависимостью. Для очень больших токов или прецизионной точности следует использовать четырехпроводной резистор, специально предназначенный для измерений тока - измерительные проводники подключены в самом резисторе. В этом случае снятое напряжение не зависит от сопротивления соединения с токонесущими проводниками, которые на схеме для ясности показаны жирными линиями.

В этой схеме необходимо использовать операционный усилитель, который имеет диапазон входных синфазных сигналов вплоть до положительного напряжения питания (307, 355 и 441 обладают этим достоинством), если, конечно, вы не питаете операционный усилитель от еще более положительного вспомогательного напряжения.

МОП-транзистор в этой схеме можно было бы заменить на проходной --транзистор, однако, поскольку выходной ток будет тогда включать ток базы, придется использовать соединение Дарлингтона для минимизации ошибки. Обратите внимание на то, что вместо -канального транзистора можно использовать «-канальный выходной транзистор (подключенный как повторитель), если поменять подключение на входе операционного усилителя. Однако в этом случае источник тока будет иметь нежелательно низкий выходной импеданс на частотах, близких к частоте контура операционного усилителя, поскольку выход является по-существу истоковым повторителем. При проектировании источников тока часто допускают подобную ошибку, так как анализ по постоянному току показывает хорошие параметры.

Измерение тока в возвратной цепи.

Хорошим способом построения прецизионного источника тока является считывание напряжения на прецизионном резисторе, включенном последовательно с нагрузкой. В этом случае легче исключить ошибки источника тока, связанные с током базы; базовый ток должен проходить либо и через нагрузку, и через усилитель считывания, либо не должен проходить ни через то, ни через другое. Для того чтобы удовлетворить этому требованию, необходимо «подвесить» нагрузку или источник питания, по крайней мере, к напряжению, равному падению напряжения на резисторе для измерения тока. На рис. 6.62 показаны две схемы, использующие плавающую нагрузку.

Первая схема - это обычная последовательная проходная схема, в которой сигнал ошибки получается из падения напряжения на небольшом резисторе, включенном на возвратном пути от нагрузки к земле. Сильноточный путь здесь также отмечен жирной линией. В данном случае соединение Дарлингтона используется не для того, чтобы избежать ошибки, связанной с базовым током (измеряется реальный ток нагрузки), а чтобы снизить ток управления до нескольких миллиампер, поэтому в качестве усилителя ошибки можно использовать обычный операционный усилитель. Измерительный резистор должен быть прецизионным мощным резистором с малой температурной зависимостью и желательно четырехпроводным. Во второй схеме транзистор регулирования находится в возвратной цепи земли сильноточного источника питания.

Рис. 6.62. Измерение тока в возвратной цепи.

Рис. 6.63. Источники тока для заземленных нагрузок, использующие плавающие высоковольтные источники питания.

Преимущество такого расположения состоит в том, что коллектор транзистора подключен к земле, поэтому можно не беспокоиться относительно изоляции корпуса транзистора от теплоотвода.

В обеих схемах выбирается из расчета падения на нем около вольта при типовых рабочих токах; значение резистора - это компромисс между ошибками смещения на входе операционного усилителя, с одной стороны, и сочетанием уменьшенного размаха источника тока и увеличенной мощностью рассеяния, с другой. Если схема предназначается для работы в большом диапазоне выходных токов, то , по-видимому, целесообразно выполнить в виде набора прецизионных мощных резисторов с выбором нужного резистора с помощью переключателя.

Заземленная нагрузка.

Если важно, чтобы нагрузка была подключена к земле, то можно использовать схему с плавающим источником. На рис. 6.63 показано два примера. В первой схеме операционный усилитель, изображенный необычным образом, представляет собой усилитель ошибки с сильноточным буферным выходом; им может быть простой 723 (для токов до ) или один из сильноточных операционных усилителей, перечисленных в табл. 4.4. Общий вывод сильноточного источника «плавает» относительно схемной земли. Большое значение имеет то, что усилитель ошибки (или, по крайней мере, выход его буфера) питается от плавающего источника и токи базы возвращаются через . Понадобится дополнительный слаботочный источник с заземленным общим выводом, если в этом же приборе будут использованы другие операционные усилители и т.п. Отрицательный источник опорного напряжения (относительно схемной земли) управляет выходным током. Обратите внимание на полярность на входах усилителя ошибки.

На второй схеме показано использование второго маломощного источника для случая, когда в качестве усилителя ошибки используется обычный слаботочный операционный усилитель. - это внешний проходной транзистор, который может быть парой Дарлингтона (или может быть МОП-транзистором), поскольку базовый ток возвращается через нагрузку, а не через измерительный резистор. Усилитель ошибки питается в данном случае от того же расщепленного источника с заземленным общим выводом, от которого питаются все остальные схемы прибора.

Рис. 6.64. Коммерческие источники питания различных форм и размеров, включая герметизированные модули, открытые блоки и полностью закрытые коробки (с разрешения фирмы Computer Products).

Эта схема очень удобна как простой стендовый источник тока со встроенным слаботочным расщепленным источником и внешним сильноточным источником. В каждом конкретном случае вы можете подобрать напряжение сильноточного источника и его нагрузочную способность по току.

1
Оглавление
email@scask.ru