Главная > АСИМПТОТИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ НЕЛИНЕЙНЫХ КОЛЕБАНИЙ (H.Н. БОТОЛЮБОВ и ЮА.МИТРОПОЛЬСКИЙ)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

В настоящее время вопросы нелинейных колебаний привлекают к себе большое внимание в самых различных областях техники и физики.

Весьма эффективным средством для исследования нелинейных колебаний являются методы асимптотических разложений по степеням малого параметра. С их помощью в большом числе практически важных случаев удается получить сравнительно цростые расчетные схемы и детально выяснить характер протекания колебательного процесса.

В связи с этим чувствуется потребность в книге, в которой соответствующая методика была бы изложена в возможно простой форме, не требующей от читателя болыпой математической подготовки. Выпущенная в 1937 г. книга Н. М. Крылова и Н. Н. Боголюбова «Введение в нелинейную механику», посвященная как раз этим вопросам, в настоящее время является библиографической редкостью, к тому же разработанные ее авторами методы получили теперь значительное развитие. В связи с этим настоящая книга и предлагается вниманию читателя.
Ee основной целью является изложение метода асимптотических разложений по степеням малого параметра в их современной форме применительно к задачам нелинейной механики.

Поэтому рассматриваемые в ней примеры имеют в основном иллюстративный характер, и книга никоим образом не претендует на скольконибудь полный охват проблем теории нелинейных колебаний и рассматриваемых в ней физических явлений.
Книга состоит из введения и пяти глав.
В главе первой рассматриваются собственные колебания в системах с одной степенью свободы, близких к линейным.

Глава вторая содержит основные элементарные сведения метода фазовой плоскости. Рассмотрены также свободные колебания в системах релаксационного типа. Для понимания вопроса о переходе к разрывной трактовке релаксационных колебаний здесь изложены основные положения метода большого параметра, разработанного А. А. Дородницыным.

Глава третья посвящена исследованию колебательных систем, находяцихс̣я под воздействием внешних периодических сил.

В главе четвертой излагаются методы усреднения, с помощью которых можно рассматривать системы со многими степенями свободы.

Эти четыре главы рассчитаны на читателя, знакомого с математикой в объеме нормального курса втуза.

Глава пятая предназначена для математиков, интересующихся вопросами теории дифференциальных уравнений с малым параметром. В ней рассмотрены вопросы обоснования асимптотических методов и установлен ряд теорем о существовании и устойчивости периодических и почти периодических решений.

1
Оглавление
email@scask.ru