Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Алгебраические методы построения решающих правилВ последнее
время широкое распространение получили алгебраические методы построения
алгоритмов распознавания и прогнозирования [42,62,63,116,138]. Суть
алгебраического подхода коротко может быть описана так. Представим, что
некоторая задача распознавания решается с помощью конечного набора
Рассматривается
два типа расширений. Вначале некоторые параметры исходных функций из констант
превращаются в переменные. Варьирование значениями этих переменных порождает
широкий класс решающих функций того или иного типа: конечный или бесконечный
набор различных гиперплоскостей, набор правил ближайшего соседа с разными
значениями
Если
же встретился такой сложный случай, что оптимального решения получить не
удается, тогда применяется другой (алгебраический) способ расширения
разнообразия решающих правил. Рассмотрим множество операторов Алгебраический подход успешно применяется при решении задач распознавания образов, в частности в распознавании и анализе изображений и в задачах прогнозирования многомерных динамических процессов. В русле этого подхода находятся, например, метод коллективов решающих правил (КРП) [138] и метод комитетов [116]. Идея
метода КРП состоит в следующем. Пусть в нашем распоряжении имеется обучающая
выборка На
этапе распознавания контрольного объекта В
методе комитетов в начале рассматривается широкий набор решающих правил,
например параметрическое семейство из конечного числа гиперплоскостей. Каждая
плоскость делит пространство Решение
о принадлежности распознаваемого объекта Процедура построения коллективного решающего правила хорошо иллюстрирует важную роль методов распознавания в процессе познания. Исходная ситуация характеризовалась высокой степенью неопределенности, отсутствием какой бы то ни было модели изучаемого явления. Каждая отдельная гиперплоскость не позволяла надежно отличать один образ от другого, т. е. была «некорректной» распознающей моделью. Параметрический класс линейных решающих правил позволил сформировать из своего состава «корректную» распознающую модель. Как подчеркивает Ю. И. Журавлев [62], именно таким путем с помощью методов распознавания ситуации в неформализованных или слабо формализованных естественнонаучных областях оснащаются формализованными средствами познания. Создаваемые при этом модели позволяют ответить хотя бы на вопрос «Что происходит?». Если в обучающей выборке имеется соответствующая информация, то ее дальнейший анализ может привести к обнаружению закономерностей причинно-следственного характера и сформировать модель для ответа на вопрос «Как это происходит?» или даже на вопрос «Почему именно так, а не иначе?».
|
1 |
Оглавление
|