Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА XI. ОПРЕДЕЛЕНИЕ СВОЙСТВ ПОСЛЕДОВАТЕЛЬНОСТНЫХ МАШИН ПО ИХ РЕАКЦИИ НА ВХОДНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ КОНЕЧНОЙ ДЛИНЫ§ 11.1. Основные определения и постановка задачиВ настоящей главе конечные автоматы и П-машины рассматриваются как существующие объекты, с которыми можно экспериментировать, но о внутренней структуре которых имеются лишь ограниченные сведения. Предполагается, что исследователь может только подавать последовательности конечной длины на вход конечного автомата или П-машины и наблюдать его выход. Задача состоит в том, чтобы на основании этих наблюдений прийти к заключению об особенностях структуры исследуемого конечного автомата или П-машины, определить состояние, в котором находится автомат или П-машина, определить (если возможно) диаграмму состояний. Факт подачи на вход П-машины последовательности конечной длины Пусть на вход П-машины подается последовательность Последовательность на входе и синхронную с ней последовательность на выходе, т. е. соответствующую ленту П-машины (без строки Можно представить себе различные типы экспериментов. В случае, когда в распоряжении экспериментатора имеется один экземпляр исследуемой П-машины и на вход ее подается заранее определенная последовательность, мы имеем дело с простым неразвет в ленным экспериментом. Если же последовательность входных символов такова, что каждый последующий входной символ экспериментатор выбирает в зависимости от предыдущих выходных символов, эксперимент носит название простого разветвленного (или же кратко — разветвленного). В том случае, когда в распоряжении исследователя имеется несколько экземпляров одной и той же П-машины, находящихся в одинаковом начальном состоянии, можно провести кратный эксперимент, подавая одновременно различные последовательности на входы всех этих экземпляров. Разновидностью кратного эксперимента можно считать эксперимент с одной П-машиной, снабженной «гвозвратной кнопкой», т. е. устройством, которое после проведения эксперимента позволяет экспериментатору возвращать П-машину в исходное состояние. Задачу определения тех или иных особенностей структуры исследуемой П-машины по результатам конечного эксперимента можно ставить лишь после того, как точно оговорены факты, априорно известные об этой машине. Как будет показано ниже, то новое, что можно выяснить об изучаемой П-машине, существенно зависит от априорной информации, т. е. информации, которая уже имелась в нашем распоряжении до начала эксперимента. С самого начала можно отметить следующее интуитивно ясное утверждение: если о П-машине ничего не известно, то никакой конечный эксперимент не позволяет установить даже числа ее состояний. Очевидно, что для изучения машины необходимо заранее знать характер и число Пусть имеется П-машина S с k внутренними состояниями
Рис. 11.1. Тогда всегда можно построить другую П-машину Пусть, например, с конечным автоматом А с выходным преобразователем, диаграмма состояний которого показана на рис. 11.1, мы проводили эксперименты Приведенные рассуждения показывают, что для экспериментального определения особенностей внутренней структуры автомата или П-машины кроме числа входных символов
Рис. 11.2. В дальнейшем мы будем предполагать, что числа k и а) определение эквивалентности некоторых двух состояний одной и той же или двух разных П-машин; б) определение эквивалентности двух П-машин; в) определение диаграммы состояний П-машины; г) определение, в каком состоянии находилась Я-машина в начале эксперимента, или приведение ее в определенное состояние к концу эксперимента и т. д. Для того, чтобы эти задачи можно было решать, необходимо знать, какие эксперименты можно проводить с П-машинами (например, возможен ли кратный эксперимент), а также некоторые дополнительные сведения о множестве изучаемых машин (например, задано множество машин, число состояний которых известно, и все состояния которых не эквивалентны друг Другу). В § 11.2 приводится решение основной задачи об определении эквивалентности состояний П-машины (теорема Мура). В последующих параграфах рассмотрено решение задач об исследовании П-машин в случае, когда возможно проведение кратных экспериментов (в § 11.3), а также в случае, когда исследователь может проводить только простой эксперимент, в том числе и разветвленный (§ 11.4).
|
1 |
Оглавление
|