Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Приложение I. Простой вывод преобразования Лоренца (дополнение к § 11)При расположении систем координат, изображенном на рис. 2, оси X обеих систем постоянно совпадают. Мы можем здесь разделить задачу на две части и сначала рассматривать лишь события, локализированные на оси X. Такое событие определяется относительно системы координат К абсциссой Световой сигнал, распространяющийся в положительном направлении оси X, движется в соответствии с уравнением
или
Так как этот же световой сигнал распространяется и относительно К с той же скоростью с, то его движение относительно системы К будет описываться уравнением
Пространственно - временные точки (события), удовлетворяющие уравнению (1), должны удовлетворять также уравнению (2). Это, очевидно, будет иметь место в том случае, если вообще выполняется соотношение
где Совершенно аналогичное рассуждение, примененное к световым лучам, распространяющимся в отрицательном направлении оси X, приводит к условию
Складывая и вычитая соотношения (3) и (4) и при этом вводя для удобства вместо постоянных
получаем
Наша задача была бы решена, если бы были известны постоянные а и Для начала координат системы К все время
Обозначая через
То же самое значение Далее, из принципа относительности ясно, что с точки зрения системы К длина некоторого единичного масштаба, покоящегося относительно К, должна быть точно такой же, как и длина такого же масштаба, покоящегося относительно К, с точки зрения К. Чтобы знать, как ведут себя точки оси X, с точки зрения системы К, нам надо лишь сделать «моментальный снимок» системы К из системы
Следовательно, две точки оси X, расстояние между которыми при измерении в системе К равно
Но если моментальный снимок делается из системы К
Отсюда заключаем, что две точки на оси X, находящиеся на расстоянии, равном единице (относительно К), на нашей моментальной фотографии разделены расстоянием
Так как, согласно сказанному выше, обе моментальные фотографии должны быть идентичны, то
Равенства (6) и (76) определяют постоянные а и
Итак, мы получили преобразование Лоренца для событий на оси X. Оно удовлетворяет условию
Распространение этого результата на события, происходящие вне оси X, достигается сохранением уравнений (8) и добавлением уравнений
При этом постулат постоянства скорости света в пустоте остается в силе для световых лучей любого направления как для системы К, так и для системы К. Это можно показать следующим образом. Пусть в момент времени
или, после возведения этого уравнения в квадрат,
Закон распространения света в соединении с постулатом относительности требует, чтобы упомянутый сигнал — при наблюдении из системы К — распространялся согласно формуле
или
Чтобы уравнение (10а) было следствием уравнения (10), должно выполняться соотношение:
Так как для точек на оси X должно выполняться уравнение (8а), то Преобразование Лоренца, выраженное уравнениями (8) и (9), еще должно быть обобщено. Очевидно, несущественно, что координатные оси системы К были выбраны пространственно параллельными осям системы К. Несущественно также, что скорость равномерного и прямолинейного движения системы К относительно К имела направление оси X. Из простого рассуждения следует, что в этом общем случае преобразование Лоренца можно составить из двух преобразований, а именно: из преобразований Лоренца для частного случая и из чисто пространственных преобразований, которые соответствуют переходу от одной прямоугольной системы координат к другой, с иным направлением осей. Обобщенное преобразование Лоренца характеризуется математически таким образом. Оно выражает переменные
Это означает: если в левую часть последнего равенства вместо
|
1 |
Оглавление
|