Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 25. Гауссовы координатыАналитико-геометрический метод рассмотрения может быть, согласно Гауссу, описан следующим образом. Представим себе, что на поверхность стола нанесена система некоторых кривых (см. рис. 4), которые мы назовем
Рис. 4 иметь произвольную форму. Тогда каждой точке поверхности стола соответствует одно значение и и одно значение
где
где
В этом случае Это рассуждение применимо прежде всего к двумерному континууму. Но метод Гаусса может быть применен также к континууму трех, четырех и более измерений. Если, например, имеется четырехмерный континуум, мы можем представить его следующим образом. Каждой точке континуума мы произвольно ставим в соответствие четыре числа определенное с физической точки зрения, то выполняется следующая формула:
где величины
Тогда в четырехмерном континууме выполняются соотношения, которые аналогичны соотношениям, справедливым для измерений в трехмерном пространстве. Правда, приведенная выше гауссовская трактовка Резюмируя, мы можем сказать следующее: Гаусс предложил метод математического описания любого континуума, в котором определены метрические соотношения («расстояния» между соседними точками). Каждой точке континуума приписывается столько чисел (гауссовых координат), сколько измерений имеет континуум. Способ приписания выбран таким, чтобы он был однозначным и чтобы соседним точкам соответствовали числа (гауссовы координаты), отличающиеся на бесконечно малую величину. Гауссова система координат является логическим обобщением декартовой. Она применима также и к неевклидовым континуумам, но лишь тогда, когда малые по отношению к определенному размеру («расстоянию») части рассматриваемого континуума тем более похожи на эвклидов континуум, чем меньше рассматриваемая часть континуума.
|
1 |
Оглавление
|