Главная > Теория относительности (Эйнштейн А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 25. Гауссовы координаты

Аналитико-геометрический метод рассмотрения может быть, согласно Гауссу, описан следующим образом. Представим себе, что на поверхность стола нанесена система некоторых кривых (см. рис. 4), которые мы назовем -кривыми и пронумеруем их какими-либо числами. На рис. 4 изображены кривые Но между кривыми следует представить себе бесконечно много кривых, которые соответствуют всем вещественным числам между 1 и 2. Тогда получается система -кривых, которые бесконечно плотно покрывают всю поверхность стола. Ни одна кривая и не должна пересекать другую; через каждую точку поверхности стола проходит одна и только одна кривая. Тогда каждой точке поверхности стола соответствует совершенно определенное значение и. Начертим на той же поверхности систему -кривых, которые удовлетворяют тем же условиям и обозначены соответствующим образом числами, но также могут

Рис. 4

иметь произвольную форму. Тогда каждой точке поверхности стола соответствует одно значение и и одно значение эти два числа мы назовем координатами поверхности стола (гауссовы координаты). Например, точка Р на рис. 4 имеет гауссовы координаты Тогда две соседние точки Р и Р на поверхности соответственно имеют координаты и

где означают весьма малые числа. Расстояние между Р и , измеренное линейкой, также является весьма малым числом Тогда, согласно Гауссу, мы имеем

где — величины, которые вполне определенным образом зависят от и и Величины определяют поведение линеек по отношению к -кривым и -кривым, а следовательно, по отношению к поверхности стола. Только в том случае, когда точки рассматриваемой поверхности образуют евклидов континуум (по отношению к измерительным линейкам), можно начертить -кривые и -кривые и приписать им числа таким образом, что

В этом случае -кривые и -кривые становятся прямыми линиями в смысле евклидовой геометрии, причем перпендикулярными друг другу. Здесь гауссовы координаты являются просто декартовыми координатами. Гауссовы координаты, очевидно, и есть сопоставление точке рассматриваемой поверхности пары чисел, причем такое, что очень мало различающимся численным значениям однозначно соответствуют соседние точки в пространстве.

Это рассуждение применимо прежде всего к двумерному континууму. Но метод Гаусса может быть применен также к континууму трех, четырех и более измерений. Если, например, имеется четырехмерный континуум, мы можем представить его следующим образом. Каждой точке континуума мы произвольно ставим в соответствие четыре числа которые называются «координатами». Соседние точки соответствуют соседним значениям координат. Если соседним точкам Р и Р сопоставлено расстояние измеренное и вполне

определенное с физической точки зрения, то выполняется следующая формула:

где величины и т. д. имеют значения, которые изменяются от точки к точке в континууме. Лишь в том случае, когда континуум является евклидовым, координаты можно связать с точками континуума так, что мы получаем формулу

Тогда в четырехмерном континууме выполняются соотношения, которые аналогичны соотношениям, справедливым для измерений в трехмерном пространстве.

Правда, приведенная выше гауссовская трактовка не всегда возможна; она возможна лишь в том случае, когда достаточно малые области рассматриваемого континуума можно считать эвклидовыми континуумами. Например, это осуществляется, очевидно, в случае неравномерно нагретой доски стола, температура которой изменяется в зависимости от места. Температура малой части доски стола практически постоянна, и таким образом геометрические свойства линеек почти такие, какими они должны быть в соответствии с правилами эвклидовой геометрии. Следовательно, указанные в предыдущем параграфе затруднения в построении квадратов не проявятся четко до тех пор, пока это построение не распространено на значительную часть поверхности стола.

Резюмируя, мы можем сказать следующее: Гаусс предложил метод математического описания любого континуума, в котором определены метрические соотношения («расстояния» между соседними точками). Каждой точке континуума приписывается столько чисел (гауссовых координат), сколько измерений имеет континуум. Способ приписания выбран таким, чтобы он был однозначным и чтобы соседним точкам соответствовали числа (гауссовы координаты), отличающиеся на бесконечно малую величину. Гауссова система координат является логическим обобщением декартовой. Она применима также и к неевклидовым континуумам, но лишь тогда, когда малые по отношению к определенному размеру («расстоянию») части рассматриваемого континуума тем более похожи на эвклидов континуум, чем меньше рассматриваемая часть континуума.

1
Оглавление
email@scask.ru