Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Рассеяние на кристаллеСледующий пример — это явление, в котором интерференцию амплитуд вероятности следует проанализировать тщательнее. Речь идет о процессе рассеяния нейтронов на кристалле. Пусть имеется кристалл, в котором много атомов, а в центре каждого атома — ядро; ядра расположены периодически, и откуда-то издалека на них налетает пучок нейтронов. Различные ядра в кристалле можно пронумеровать индексом , где пробегает целые значения , а равняется общему числу атомов. Задача состоит в том, чтобы подсчитать вероятность того, что нейтрон окажется в счетчике, изображенном на фиг. 1.5. Для каждого отдельного атома амплитуда того, что нейтрон достигнет счетчика , равна амплитуде того, что нейтрон из источника попадет в ядро , умноженной на амплитуду а рассеяния в этом месте и умноженной на амплитуду того, что он из попадет в счетчик . Давайте запишем это:
(1.11)
Фигура 1.5. Измерение рассеяния нейтронов на кристалле. Написав это, мы предположили, что амплитуда рассеяния — одна и та же для всех атомов. Здесь у нас есть множество, по-видимому, неразличимых путей. Они неразличимы оттого, что нейтрон с небольшой энергией рассеивается на ядре, не выбивая при этом самого атома с его места в кристалле — никакой «отметки» о рассеянии не остается. Согласно нашим прежним, рассуждениям, полная амплитуда того, что нейтрон попал в , включает в себя сумму выражения (1.11) по всем атомам: (1.12) Из-за того, что складываются амплитуды рассеяния на атомах, по-разному расположенных в пространстве, у амплитуд будут разные фазы, и это даст характерную интерференционную картину, которую мы уже анализировали на примере рассеяния света на решетке. Интенсивность нейтронов как функция угла в подобном опыте действительно часто обнаруживает сильнейшие изменения - очень острые интерференционные пики, между которыми ничего нет (фиг. 1.6, а). Однако в некоторых сортах кристаллов этого не случается, в них наряду с упомянутыми выше дифракционными пиками имеется общий фон от рассеяния во всех направлениях. Мы должны попытаться понять столь таинственную с виду причину этого. Дело в том, что мы не учли одного важного свойства нейтрона. Его спин равен и тем самым он может находиться в двух состояниях: либо его спин направлен вверх (скажем, поперек страницы на фиг. 1.5), либо вниз. И если у ядер самого кристалла спина нет, то спин нейтрона никакого действия не окажет. Но когда и у ядер кристалла есть спин, равный, скажем, тоже , то вы заметите фон от описанного выше размазанного рассеяния. Объяснение состоит в следующем.
Фигура 1.6. Скорость счета нейтронов как функция угла. а — для ядер со спинам О; б — вероятность рассеяния с переворотом спина; в — наблюдаемая скорость счета для ядра со спином . Если спин нейтрона куда-то направлен и спин атомного ядра направлен туда же, то в процессе рассеяния направление спина не меняется. Если же спины нейтрона и атомного ядра направлены в противоположные стороны, то рассеяние может происходить посредством двух процессов, в одном из которых направления не меняются, а в другом происходит обмен направлениями. Это правило о том, что сумма спинов не должна меняться, аналогично нашему классическому закону сохранения момента количества движения. И мы уже в состоянии будем понять интересующее нас явление, если предположим, что все ядра, на которых происходит рассеяние, имеют одно и то же направление спина. Нейтрон с тем же направлением спина тогда рассеется так, что получится ожидавшееся узкое интерференционное распределение. А что будет с нейтроном с противоположным направлением спина? Если он рассеивается без переворота направления спина, то ничего по сравнению со сказанным не меняется; но если при рассеянии оба спина переворачиваются, то, вообще говоря, можно указать, на каком из ядер произошло рассеяние, потому что именно у этого ядра спин перевернулся. Но если мы в состоянии указать, на каком атоме случилось рассеяние, то причем здесь остальные атомы? Ни при чем, конечно. Рассеяние здесь такое же, как от отдельного атома. Чтобы учесть этот эффект, надо видоизменить математическую формулировку уравнения (1.12), потому что в том анализе состояния не были охарактеризованы полностью. Пусть вначале у всех нейтронов, вылетающих из источника, спин направлен вверх, а у всех ядер кристалла — вниз. Во-первых, нам нужна амплитуда того, что в счетчике нейтронов их спин окажется направленным вверх и все спины в кристалле будут по-прежнему смотреть вниз. Это ничем не отличается от наших прежних рассуждений. Обозначим через а амплитуду рассеяния без переворота спина. Амплитуда рассеяния от -гo атома, разумеется, равна
Поскольку все спины атомов направлены вниз, разные альтернативы (разные значения ) нельзя друг от друга отличить. В этом процессе все амплитуды интерферируют. Ни есть и другой случай, когда спин детектируемого нейтрона смотрит вниз, хотя вначале, в , он смотрел вверх. Тогда в кристалле один из спинов должен перевернуться вверх, скажем спин -го атома. Допустим, что у всех атомов амплитуда рассеяния с переворотом спина одна и та же и равна . (В реальном кристалле имеется еще одна неприятная возможность: перевернутый спин переходит к какому-то другому атому, но допустим, что в нашем кристалле вероятность этого мала.) Тогда амплитуда рассеяния равна (1.13) Если мы спросим теперь, какова вероятность того, что у нейтрона спин окажется направленным вниз, а у -го ядра — вверх, то она будет равняться квадрату модуля этой амплитуды, т. е. просто , умноженному на . Второй множитель почти не зависит от того, где атом расположен в кристалле, и все фазы при вычислении квадрата модуля исчезают. Вероятность рассеяния на любом ядре кристалла с переворотом спина, стало быть, равна
что дает гладкое распределение, как на фиг. 1.6, б. Вы можете возразить: «А мне все равно, какой атом перевернулся. Пусть так, но природа-то это знает, и вероятность на самом деле выходит такой, как написано выше, — никакой интерференции не остается. А вот если вас заинтересует вероятность того, что спин в детекторе будет направлен вверх, а спины всех атомов — по-прежнему вниз, то вы должны будете взять квадрат модуля суммы:
Поскольку у каждого слагаемого в этой сумме есть своя фаза, то они интерферируют и появляется резкая интерференционная картина. И если мы проводим эксперимент, в котором мы не наблюдаем спина детектируемого нейтрона, то могут произойти события обоих типов и сложатся отдельные вероятности. Полная вероятность (или скорость счета) как функция угла тогда выглядит подобно кривой на фиг. 1.6, в. Давайте еще раз окинем взглядом физику этого опыта. Если вы способны в принципе различить взаимоисключающие конечные состояния (хотя вы и не собирались на самом деле этого делать), то полная конечная вероятность получается подсчетом вероятности каждого состояния (а не амплитуды) и последующим их сложением. А если вы неспособны даже в принципе различить конечные состояния, тогда надо сперва сложить амплитуды вероятностей, а уж потом вычислять квадрат модуля и находить самую вероятность. Заметьте особенно, что если бы вы попытались представить нейтрон в виде отдельной волны, то получили бы одно и то же распределение и для рассеяния нейтронов, вращающихся спином вниз, и для нейтронов, вращающихся спином вверх. Вы должны были бы сказать, что «волна» нейтронов со спином, направленным вниз, пришла ото всех различных атомов и интерферирует так же, как это делает одинаковая по длине волна нейтронов со спином, направленным вверх. Но мы знаем, что на самом деле это не так. Так что (мы уже это отмечали) нужно быть осторожным и не представлять себе чересчур реально волны в пространстве. Они полезны для некоторых задач. Но не для всех.
|
1 |
Оглавление
|