Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 1.7. Теоремы и доказательстваКак мы уже говорили, цель нашей книги — подробное изложение математических основ системы шифрования RSA. Разработка ее математического хребта была завершена к концу девятнадцатого века усилиями древнегреческих математиков, Ферма, Эйлера и Гаусса. Однако еще 20 лет назад большинство приложений оставалось неизвестными, а некоторые теоремы, которые мы будем упоминать, появились лишь в последние годы. Многие из приводимых здесь результатов не будут для Вас новыми. К их числу относятся, например, способ вычисления наибольшего общего делителя, основанный на последовательных делениях, а также простейшие процедуры разложения на простые множители. Новизна может заключаться, однако, в самом подходе, поскольку мы доказываем каждое утверждение, включая и корректность вычислительных процедур, исходя из первичных принципов. Математика древнего Египта и Месопотамии представляла собой набор правил для решения практических задач. Только ее объединение с греческой философией превратило ее в современную теоретическую науку. Первые греческие математики — Фалес (Thales) и Пифагор (Pythagoras) - были также знаменитыми философами. Представление о том, что математический факт можно доказывать, произросло из взаимодействия с философией. Помимо всего прочего, доказательство — это просто рассуждение, которое выводит некоторое утверждение из других, уже известных. А рассуждать греческие философы любили! Около 400 года до н. э. греческие математики почувствовали необходимость в более или менее точной формулировке предположений, лежащих в основе их работы. Поэтому и Эвклид открывает свои «Начала» со строгих определений и аксиом, на которых базируются его доказательства. Например, в начале первой книги он определяет точку, прямую, плоскость, поверхность и т.д. Затем он формулирует аксиомы, истинность которых он считает самоочевидной. Аксиомы объясняют связи между ранее введенными объектами. Затем он показывает, каким образом гораздо более сложные факты об изучаемых объектах сводятся, путем логических рассуждений, к аксиомам. Главное достоинство его подхода состоит в придании основательности всему зданию. Если фундамент достаточно прочный, то и все здание может возноситься высоко без опасения, что оно рухнет под собственным весом. Математический факт обычно называется теоремой. Это греческое слово исходно означало «наблюдение, теория». Его современное значение «доказываемое утверждение» восходит по меньшей мере к эвклидовым «Началам». Утверждение теоремы часто принимает вид условного утверждения: если выполняется некоторое предположение, то справедливо некоторое заключение. Доказательство такой теоремы представляет собой логическое рассуждение, которое показывает, как заключение вытекает из предположения. Приведем пример: Теорема 1. Если а — четное целое число, то число Предположение данной теоремы состоит в том, что что «базисные свойства» действительно элементарны и Вы их хорошо знаете. Сюда входят, например, правила сложения и умножения целых чисел, а также утверждение о том, что между любыми двумя целыми числами есть лишь конечное множество целых чисел. Воспользуемся этими свойствами для доказательства приведенной выше теоремы. Доказательство теоремы 1. Предположение теоремы о четности а означает, что а делится на 2, см. § 3.1. Поэтому должно существовать такое число
Поэтому число Теорема 1 показывает, что из факта четности числа о вытекает, факт четности его квадрата. Обратным к условному утверждению «из А следует В» является условное утверждение «из В следует А». Значит утверждение, обратное к теореме 1, звучит так: если целое число Теорема 2. Целое число а четное, если и только если Мы уже доказали, что если о четное, то и
Вернемся к доказательству теоремы 2. Доказательство теоремы 2. Мы уже видели, что если число о четное, то и число
т.е. тоже нечетное число. Таким образом, утверждение, противоположное к исходному, истинно, а значит, истинно и исходное утверждение, и мы доказали, что если Теорема 1 была сформулирована в виде «если о четно, то и справедливость утверждения для всех четных чисел. Рассмотрим теперь утверждение «всякое четное число делится на 4». Мы снова указываем на общее свойство всех четных чисел, однако на сей раз утверждение оказывается ложным. Почему? Например, потому, что число 6 четное, однако на 4 оно не делится. Таким образом, утверждение о том, что какое-то свойство присуще всем элементам некоторого множества, можно опровергнуть, предъявив элемент, для которого оно не выполняется. Такой элемент называется контрпримером к утверждению. Не всегда утверждение теоремы записывается в приведенном выше условном виде. Иногда, например, утверждается, что объект с заданными свойствами существует. Так, для любого вещественного числа х существует такое целое число Большинство книг по теории чисел широко используют неконструктивные доказательства даже при наличии конструктивных. Это не просто вопрос вкуса: часто конструктивные доказательства выглядят гораздо более неуклюже, чем аналогичные доказательства чистого существования, а для математиков элегантность значит не меньше, чем для художников. В этой книге мы будем, однако, по мере сил избегать неконструктивных доказательств. Такой подход объясняется, в первую очередь, тем, что нас интересуют приложения в криптографии. Поэтому не достаточно просто знать, что у составного числа есть нетривиальный множитель, нужно уметь его отыскивать. Эти краткие заметки должны позволить Вам приступить к чтению. Методы доказательств будут подробнее разобраны ниже, прежде всего в § 3.7 и § 6.2. Однако необходимо с самого начала понять, что искусство доказательства теорем следует заботливо взращивать, и лучший способ выращивания — частое упражнение. Когда Птолемей, царь египетский, спросил Эвклида, нет ли более простого способа изучения геометрии, чем штудирование «Начал», ответ математика гласил: «В геометрии нет царской дороги». Истинное во времена Эвклида, это утверждение сохраняет свою справедливость и по сей день.
|
1 |
Оглавление
|