Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
9. Специальные методы.Из всех численных методов интегрирования обыкновенных дифференциальных уравнений, рассчитанных на произвольные уравнения (точнее, на классы уравнений, у которых правые части имеют определенное число непрерывных и ограниченных производных), наилучшие результаты и при расчетах на ЭВМ, и при ручных расчетах дают методы Рунге — Кутта. Поэтому, приступая к решению какой-либо конкретной задачи Коши, обычно пробуют решить ее одной из описанных в п. 6 схем. Но выше отмечалось, что встречаются задачи с быстропеременными решениями, когда все схемы Рунге — Кутта для получения удовлетворительной точности требуют неприемлемо малого шага. Характерным примером такой задачи является система уравнений химической кинетики. Сначала разберем задачу химического распада одного вещества
здесь и — концентрация вещества, t — время, а — скорость распада, которую считаем зависящей от t и и (ибо она зависит от температуры, а температура определяется выделением тепла при реакции и внешними условиями охлаждения). Запишем для уравнения (34) схему ломаных (15)
По смыслу задачи, концентрация вещества должна быть положительной. Но если скорость распада настолько велика, что хотя бы в одной точке Для одного уравнения (34) эта трудность несущественна: если скорость распада Для подобных задач приходится использовать специальные методы, разработанные именно для данных узких классов уравнений; для других классов уравнений эти методы обычно оказываются непригодными. Способы построения специальных методов основаны на изучении и использовании свойств общих решений исследуемого класса уравнений. Рассмотрим некоторые способы. Большинство способов основано на том, что для исходного уравнения и Для нахождения приближенных решений можно применить метод Пикара или другие аналогичные методы. Нередко удается добиться успеха, слегка упрощая правую часть исходного уравнения. Например, если в задаче (34) положить Первый способ построения специальных схем удобен для знакопеременных решений (например, быстро осциллирующих). В нем рассматривается разность
здесь Второй способ выгоден для знакопостоянных решений (например, растущих по экспоненциальному или степенному закону). В нем рассматривается отношение
где Пример. Если для уравнения распада (34) воспользоваться приближенным решением
при слабо меняющейся Третий способ заключается в том, что вспомогательное уравнение рассматривается не на большом промежутке изменения аргумента, а на одном шаге сетки Пример. Рассмотрим уравнение, возникающее в задачах так называемой дифференциальной прогонки:
Если положить
Оно интегрируется в элементарных функциях
Это соотношение явно разрешается, давая такую специальную схему:
Если можно считать
Схемы (39а) и (396) дают неплохие результаты даже в тех случаях, когда условие устойчивости прогонки нарушено, а точное решение задачи (38) имеет полюсы. При использовании третьего способа обычно удается построить схемы первого или второго порядка точности, но с малым остаточным членом (точнее, мала по величине комбинация производных, входящая множителем в остаточный член); схемы более высокого порядка точности построить этим путем трудно. Первый и второй способы позволяют использовать схемы Рунге—Кутта высокого порядка точности, но остаточный член при этом будет не очень мал, ибо решения Упомянем четвертый способ, заключающийся в построении так называемых точных разностных схем, которым точно удовлетворяет решение исходной задачи. Коэффициенты таких схем обычно являются функционалами от коэффициентов исходного уравнения (и могут зависеть также от искомого решения). Но техника построения точных схем более сложна, и мы их не будем рассматривать, отсылая читателя к монографии [30].
|
1 |
Оглавление
|