Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА VI. АЛГЕБРАИЧЕСКАЯ ПРОБЛЕМА СОБСТВЕННЫХ ЗНАЧЕНИЙВ главе VI рассмотрены методы нахождения собственных значений и собственных векторов квадратных матриц. В § 1 изложены необходимые сведения по линейной алгебре, рассмотрена устойчивость проблемы собственных значений и даны простые (но сравнительно медленные) численные методы решения. Наиболее быстрые численные методы нахождения всех собственных значений и собственных векторов эрмитовых матриц разобраны в § 2, а неэрмитовых матриц — в § 3. В § 4 изложены методы, которые оказываются более выгодными при определении не всех, а некоторых собственных значений и собственных векторов. § 1. Проблема и простейшие методы1. Элементы теории.Напомним некоторые сведения из курса линейной алгебры. Если А — квадратная матрица n-го порядка и
Для существования нетривиального решения задачи (1) должно выполняться условие
Этот определитель является многочленом Если найдено некоторое собственное значение, то, подставляя его в однородную систему (1), можно определить соответствующий собственный вектор. Будем нормировать собственные векторы. Тогда каждому простому (не кратному) собственному значению соответствует один (с точностью до направления) собственный вектор, а совокупность всех собственных векторов, соответствующих совокупности простых собственных значений, линейно-независима. Таким образом, если все собственные значения матрицы простые, то она имеет Кратному собственному значению кратности
У каждой из них характеристическое уравнение принимает вид
это легко проверить, поочередно подставляя векторы (4) в равенство (1). У второй же матрицы имеется только один собственный вектор
откуда Таким образом, если среди собственных значений матрицы есть кратные, то ее собственные векторы не всегда образуют базис. Однако и в этом случае собственные векторы, - соответствующие различным собственным значениям, являются линейнонезависимыми. Задача на собственные значения легко решается для некоторых простых форм матрицы: диагональной, трехдиагональной, треугольной или почти треугольной. Например, определитель треугольной (в частности, диагональной) матрицы равен произведению диагональных элементов. В этом случае Многие численные методы решения задач на собственные значения основаны на приведении матрицы к одной из перечисленных выше простых форм при помощи преобразования подобия. Матрица Особенно удобны преобразования подобия при помощи унитарных матриц
Если А — нормальная матрица, то при подобном унитарном преобразовании она остается нормальной; читателям предлагается проверить это. Известно, что для любой матрицы А есть такое унитарное преобразование, что Непосредственно для практических вычислений теорема Шура ничего не дает, ибо неизвестен способ нахождения такого унитарного преобразования. Но одно косвенное следствие является важным. После указанного преобразования нормальная матрица Это существенно, ибо в практике вычислений часто встречаются нормальные матрицы, особенно их такие частные случаи, как эрмитовы, косоэрмитовы и унитарные матрицы. Ортогональные же преобразования обеспечивают наибольшую устойчивость алгоритма по отношению к ошибкам округления. Действия с неортогональными базисами и преобразованиями при больших порядках матрицы нередко приводят к «разболтке» счета (это уже отмечалось в главе II в связи с вопросами аппроксимации). Не всякую матрицу с кратными собственными значениями можно подобно преобразовать к диагональной форме, но ее заведомо можно преобразовать к канонической жордановой форме. Если же матрица имеет только простые собственные значения, то существует преобразование подобия (не обязательно унитарное), приводящее ее к диагональной. В самом деле, такая матрица имеет
|
1 |
Оглавление
|