Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3. Метод интерполяции.Если мы найдем характеристический многочлен, то все его корни нетрудно вычислить, например, методом парабол. В методе парабол для нахождения одного корня обычно требуется около 10 раз вычислить многочлен. Поэтому важно найти способ быстрого вычисления характеристического многочлена. Те методы решения проблемы собственных значений, которые позволяют определить характеристический многочлен за конечное число действий, называются прямыми. Методы, в которых характеристический многочлен определяется как предел некоторого итерационного процесса, называются итерационными. Это разделение носит несколько условный характер, ибо даже если характеристический многочлен найден за конечное число действий, то его корни приходится определять итерационным процессом. Однако оно имеет практический смысл, поскольку нахождение характеристического многочлена высокой степени гораздо более трудоемко, чем отыскание его корней. Простейшим прямым методом является метод интерполяции (предложенный, по-видимому, Ш. Е. Микеладзе в 1948 г.) Известно, что многочлен Описанный алгоритм несложен и легко программируется на ЭВМ. В нем следует использовать стандартную программу вычисления определителя методом исключения (глава V, § 1, п. 3). При этом характеристический многочлен определяется примерно за Видно, что для матриц невысокого порядка 10 нахождение характеристического многочлена методом интерполяции требует не более 0,5 сек на ЭВМ БЭСМ-4, что вполне приемлемо. Если известны границы, в которых расположены собственные значения, то целесообразно размещать узлы интерполяции Метод интерполяции прост и применим для матриц произвольной структуры, а также для более сложных проблем. Например, общую задачу Однако, чем выше порядок матрицы, тем менее выгоден метод интерполяции. Во-первых, число выполняемых арифметических действий возрастает с ростом порядка очень быстро как Существуют прямые методы Леверье, А. Н. Крылова, А. М. Данилевского, Самуэльсона и Ланцоша, позволяющие вычислить все коэффициенты характеристического многочлена произвольной матрицы примерно за Однако в § 2 главы V отмечалось, что корни многочлена высокой степени могут быть очень чувствительны к погрешностям коэффициентов. Кроме того, и коэффициенты и сами корни характеристического многочлена нередко слабо устойчивы по матричным элементам, как было показано в п. 2. Поэтому указанные выше экономичные методы оказались достаточно устойчивыми только для матриц невысокого порядка
|
1 |
Оглавление
|